期刊论文详细信息
Sensors
Electrical Characterization of Microelectromechanical Silicon Carbide Resonators
Wen-Teng Chang1 
[1] Department of Electrical Engineering, National University of Kaohsiung, No. 700, Kaohsiung University Road, Nan-Tzu District, Kaohsiung 811, Taiwan; E-mail:
关键词: MEMS resonator;    Silicon carbide;    Gas rarefaction;    Duffing effect;    Temperature coefficient;   
DOI  :  10.3390/s8095759
来源: mdpi
PDF
【 摘 要 】

This manuscript describes the findings of a study to investigate the performance of SiC MEMS resonators with respect to resonant frequency and quality factor under a variety of testing conditions, including various ambient pressures, AC drive voltages, bias potentials and temperatures. The sample set included both single-crystal and polycrystalline 3C-SiC lateral resonators. The experimental results show that operation at reduced pressures increases the resonant frequency as damping due to the gas-rarefaction effect becomes significant. Both DC bias and AC drive voltages result in nonlinearities, but the AC drive voltage is more sensitive to noise. The AC voltage has a voltage coefficient of 1∼4ppm/V at a DC bias of 40V. The coefficient of DC bias is about -11ppm/V to - 21ppm/V for poly-SiC, which is more than a factor of two better than a similarly designed polysilicon resonator (-54 ppm/V). The effective stiffness of the resonator decreases (softens) as the bias potential is increased, but increases (hardens) as drive voltage increase when scan is from low to high frequency. The resonant frequency decreases slightly with increasing temperature, exhibiting a temperature coefficient of -22 ppm/°C, between 22°C and 60°C. The thermal expansion mismatch between the SiC device and the Si substrate could be a reason that thermal coefficient for these SiC resonators is about twofold higher than similar polysilicon resonators. However, the Qs appear to exhibit no temperature dependence in this range.

【 授权许可】

CC BY   
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190057814ZK.pdf 724KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:4次