Sensors | |
Design and Analyses of a MEMS Based Resonant Magnetometer | |
Dahai Ren1  Lingqi Wu1  Meizhi Yan2  Mingyang Cui2  Zheng You2  | |
[1] State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanics, Tsinghua University, Beijing, 100084, China; | |
关键词: magnetometer; MEMS; capacitance; Lorentz force; simulation; | |
DOI : 10.3390/s90906951 | |
来源: mdpi | |
【 摘 要 】
A novel design of a MEMS torsional resonant magnetometer based on Lorentz force is presented and fabricated. The magnetometer consists of a silicon resonator, torsional beam, excitation coil, capacitance plates and glass substrate. Working in a resonant condition, the sensor’s vibration amplitude is converted into the sensing capacitance change, which reflects the outside magnetic flux-density. Based on the simulation, the key structure parameters are optimized and the air damping effect is estimated. The test results of the prototype are in accordance with the simulation results of the designed model. The resolution of the magnetometer can reach 30 nT. The test results indicate its sensitivity of more than 400 mV/μT when operating in a 10 Pa vacuum environment.
【 授权许可】
CC BY
© 2009 by the authors; licensee MDPI, Basel, Switzerland
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190056256ZK.pdf | 909KB | download |