期刊论文详细信息
Journal of Low Power Electronics and Applications
Hardened Flip-Flop Optimized for Subthreshold Operation Heavy Ion Characterization of a Radiation
Ameet Chavan1  Praveen Palakurthi1  Eric MacDonald1  Joseph Neff2 
[1] University of Texas at El Paso, Electrical and Computer Engineering, El Paso, TX 79968, USA;SPAWAR System Center, Navy, San Diego, CA 92152, USA;
关键词: ultra-low voltage operation;    subthreshold;    SEU;    flip-flop;    rad-hard;   
DOI  :  10.3390/jlpea2020168
来源: mdpi
PDF
【 摘 要 】

A novel Single Event Upset (SEU) tolerant flip-flop design is proposed, which is well suited for very-low power electronics that operate in subthreshold (<Vt ≈ 500 mV). The proposed flip-flop along with a traditional (unprotected) flip-flop, a Sense-Amplifier-based Rad-hard Flip-Flop (RSAFF) and a Dual Interlocked storage Cell (DICE) flip-flop were all fabricated in MIT Lincoln Lab’s XLP 0.15 μm fully-depleted SOI CMOS technology—a process optimized for subthreshold operation. At the Cyclotron Institute at Texas A&M University, all four cells were subjected to heavy ion characterization in which the circuits were dynamically updated with alternating data and then checked for SEUs at both subthreshold (450 mV) and superthreshold (1.5 V) levels. The proposed flip-flop never failed, while the traditional and DICE designs did demonstrate faulty behavior. Simulations were conducted with the XLP process and the proposed flip-flop provided an improved energy delay product relative to the other non-faulty rad-hard flip-flop at subthreshold voltage operation. According to the XLP models operating in subthreshold at 250 mV, performance was improved by 31% and energy consumption was reduced by 27%.

【 授权许可】

CC BY   
© 2012 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190043955ZK.pdf 555KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:12次