Molecules | |
Synthesis of Thiophene and NO-Curcuminoids for Antiinflammatory and Anti-Cancer Activities | |
Mahera M. Ahmed1  M. Akram Khan1  | |
[1] Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S11WB, UK | |
关键词: NO-NSAIDs; synthesis; curcuminoids; cytotoxicity; cytokines; chemokines; anti-cancer; | |
DOI : 10.3390/molecules18021483 | |
来源: mdpi | |
【 摘 要 】
In search of better NSAIDs four novel nitric oxide donating derivatives of curcumin (compounds 9a–d), and four thiophene curcuminoids (compounds 10a–c, 11) have been synthesised. The cytotoxic effects of these compounds along with the lead compound curcumin (7) and their effect on the production of the reactive oxygen species nitric oxide and pro-inflammatory cytokines IL-1β, TNF-α and chemokine CXCL-8 were evaluated using human monocytic THP-1 and colon adenocarcinoma CACO-2 cell lines. All of the nitric oxide donating curcuminoids 9a–d and the thiophene curcuminoids 10a–c and 11 were non-cytotoxic to THP-1 cells over a concentration range of 10-100 μM and compared with curcumin compounds 10b and 10c, were more toxic. In CACO-2 cells, 10b and 11 appeared to be non-toxic at 10 to 50 μM, whereas 10a and 10c were non-cytotoxic at 10 μM only. These results clearly indicate that the introduction of a nitroxybutyl moiety to curcumin and replacement of phenyl rings with thiophene units reduces the cytotoxic effect of the parent curcumin, whereas a methyl substituted thiophene increases the cytotoxic effects. In THP-1 cells, drugs 10a and 11 significantly decreased IL-1-β production at their non-cytotoxic concentrations, whereas, they did not decrease TNF-α production in CACO-2 cells. Compound 11 showed a significant decrease in CXCL-8 production.
【 授权许可】
CC BY
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190038702ZK.pdf | 425KB | download |