期刊论文详细信息
Journal of Low Power Electronics and Applications
Analog Encoding Voltage—A Key to Ultra-Wide Dynamic Range and Low Power CMOS Image Sensor
Arthur Spivak1  Alexander Belenky1  Alexander Fish2 
[1] The VLSI Systems Center, LPCAS, Ben-Gurion University, P.O.B. 653, Be’er-Sheva 84105, Israel; E-Mail:;Department of Electrical and Computer Engineering, Bar Ilan University, Ramat Gan, 52100, Israel; E-Mail:
关键词: CMOS;    image sensor;    low power;    rolling shutter;    snapshot;    SNR;    wide dynamic range;   
DOI  :  10.3390/jlpea3010027
来源: mdpi
PDF
【 摘 要 】

Usually Wide Dynamic Range (WDR) sensors that autonomously adjust their integration time to fit intra-scene illumination levels use a separate digital memory unit. This memory contains the data needed for the dynamic range. Motivated by the demands for low power and chip area reduction, we propose a different implementation of the aforementioned WDR algorithm by replacing the external digital memory with an analog in-pixel memory. This memory holds the effective integration time represented by analog encoding voltage (AEV). In addition, we present a “ranging” scheme of configuring the pixel integration time in which the effective integration time is configured at the first half of the frame. This enables a substantial simplification of the pixel control during the rest of the frame and thus allows for a significantly more remarkable DR extension. Furthermore, we present the implementation of “ranging” and AEV concepts on two different designs, which are targeted to reach five and eight decades of DR, respectively. We describe in detail the operation of both systems and provide the post-layout simulation results for the second solution. The simulations show that the second design reaches DR up to 170 dBs. We also provide a comparative analysis in terms of the number of operations per pixel required by our solution and by other widespread WDR algorithms. Based on the calculated results, we conclude that the proposed two designs, using “ranging” and AEV concepts, are attractive, since they obtain a wide dynamic range at high operation speed and low power consumption.

【 授权许可】

CC BY   
© 2013 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190037531ZK.pdf 2368KB PDF download
  文献评价指标  
  下载次数:30次 浏览次数:18次