Sensors | |
Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production | |
Daniela Mueller2  Marco Flôres Ferrão1  Luciano Marder2  Adilson Ben da Costa2  | |
[1] Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre–RS, Brasil;Programa de Pós-Graduação em Sistemas e Processos Industriais, Universidade de Santa Cruz do Sul (UNISC), Av. Independência, 2293, CEP 96815-900, Santa Cruz do Sul–RS, Brasil; E-Mails: | |
关键词:
HCA;
|
|
DOI : 10.3390/s130404258 | |
来源: mdpi | |
【 摘 要 】
The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (
【 授权许可】
CC BY
© 2013 by the authors; licensee MDPI, Basel, Switzerland.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202003190037294ZK.pdf | 627KB | download |