期刊论文详细信息
Micromachines
A Single-Cell Study of a Highly Effective Hog1 Inhibitor for in Situ Yeast Cell Manipulation
Charlotte Hamngren Blomqvist3  Peter Dinér1  Morten Grøtli2  Mattias Goksör3 
[1] Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, SE-10044 Stockholm, Sweden; E-Mail:;Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg S-413 90, Sweden; E-Mail:;Department of Physics, University of Gothenburg, Göteborg S-412 96, Sweden; E-Mails:
关键词: microfluidics;    single-cell analysis;    MAPK;    inhibitor;    optical trapping;    cell-to-cell variability;    system biology;    Saccharomyces cerevisiae;    HOG;    optical tweezers;   
DOI  :  10.3390/mi5010081
来源: mdpi
PDF
【 摘 要 】

We present a single cell study of a highly effective Hog1 inhibitor. For this application, we used sequential treatment of a Saccharomyces cerevisiae cell array, with the Hog1 inhibitor and osmotic stress. For this purpose, a four-inlet microfluidic chamber with controlled introduction of two different cell strains within the same experimental setting and a subsequent rapid switching between treatments was designed. Multiple cell strains within the same experiment is a unique feature which is necessary for determining the expected absent cellular response. The nuclear translocation of the cytosolic MAPK, Hog1, was monitored by fluorescence imaging of Hog1-GFP on a single-cell level. An optical tweezers setup was used for controlled cell capture and array formation. Nuclear Hog1-GFP localization was impaired for treated cells, providing evidence of a congenial microfluidic setup, where the control cells within the experiments validated its appropriateness. The chamber enables multiple treatments with incubation times in the order of seconds and the possibility to remove either of the treatments during measurement. This flexibility and the possibility to use internal control cells ensures it a valuable scientific tool for unraveling the HOG pathway, similar signal transduction pathways and other biological mechanisms where temporal resolution and real time imaging is a prerequisite.

【 授权许可】

CC BY   
© 2014 by the authors; licensee MDPI, Basel, Switzerland.

【 预 览 】
附件列表
Files Size Format View
RO202003190028967ZK.pdf 516KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:13次