Proceedings Mathematical Sciences | |
Vanishing of the Top Local Cohomology Modules over Noetherian Rings | |
Kamran Divaani-Aazar1  | |
[1] Department of Mathematics, Az-Zahra University, Vanak, Post Code , Tehran, Iran$$ | |
关键词: Artinian modules; attached prime ideals; cohomological dimension; formally isolated; local cohomology; secondary representations.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let ð‘… be a (not necessarily local) Noetherian ring and ð‘€ a finitely generated ð‘…-module of finite dimension ð‘‘. Let $mathfrak{a}$ be an ideal of ð‘… and $mathfrak{M}$ denote the intersection of all prime ideals $mathfrak{p}inmathrm{Supp}_R H^d_a(M)$. It is shown that$$H^d_a(M)simeq H^d_{mathfrak{M}}(M)/sumlimits_{ninmathbb{N}}langle mathfrak{M}angle(0:_{H^d_{mathfrak{M}}(M)}a^n),$$where for an Artinian ð‘…-module ð´ we put $langlemathfrak{M}angle A=cap_{ninmathbb{N}}mathfrak{M}^n A$. As a consequence, it is proved that for all ideals $mathfrak{a}$ of ð‘…, there are only finitely many non-isomorphic top local cohomology modules $H^d_a(M)$ having the same support. In addition, we establish an analogue of the Lichtenbaum–Hartshorne vanishing theorem over rings that need not be local.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506821ZK.pdf | 242KB | download |