期刊论文详细信息
Proceedings Mathematical Sciences
Vanishing of the Top Local Cohomology Modules over Noetherian Rings
Kamran Divaani-Aazar1 
[1] Department of Mathematics, Az-Zahra University, Vanak, Post Code , Tehran, Iran$$
关键词: Artinian modules;    attached prime ideals;    cohomological dimension;    formally isolated;    local cohomology;    secondary representations.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

Let 𝑅 be a (not necessarily local) Noetherian ring and 𝑀 a finitely generated 𝑅-module of finite dimension 𝑑. Let $mathfrak{a}$ be an ideal of 𝑅 and $mathfrak{M}$ denote the intersection of all prime ideals $mathfrak{p}inmathrm{Supp}_R H^d_a(M)$. It is shown that$$H^d_a(M)simeq H^d_{mathfrak{M}}(M)/sumlimits_{ninmathbb{N}}langle mathfrak{M}angle(0:_{H^d_{mathfrak{M}}(M)}a^n),$$where for an Artinian 𝑅-module 𝐴 we put $langlemathfrak{M}angle A=cap_{ninmathbb{N}}mathfrak{M}^n A$. As a consequence, it is proved that for all ideals $mathfrak{a}$ of 𝑅, there are only finitely many non-isomorphic top local cohomology modules $H^d_a(M)$ having the same support. In addition, we establish an analogue of the Lichtenbaum–Hartshorne vanishing theorem over rings that need not be local.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506821ZK.pdf 242KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:4次