Canadian mathematical bulletin | |
Artinianness of Certain Graded Local Cohomology Modules | |
Amir Mafi2  Hero Saremi1  | |
[1] Department of Mathematics, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran;Department of Mathematics, University of Kurdistan, P.O. Box: 416, Sanandaj, Iran | |
关键词: graded local cohomology; Artinian modules; | |
DOI : 10.4153/CMB-2011-044-1 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
We show that if$R=igoplus_{ninmathbb{N}_0}R_n$ is a Noetherian homogeneous ringwith local base ring $(R_0,mathfrak{m}_0)$, irrelevant ideal $R_+$, and$M$ a finitely generated graded $R$-module, then$H_{mathfrak{m}_0R}^j(H_{R_+}^t(M))$ is Artinian for $j=0,1$ where$t=inf{iin{mathbb{N}_0}: H_{R_+}^i(M)$ is not finitelygenerated $}$. Also, we prove that if $operatorname{cd}(R_+,M)=2$, then foreach $iinmathbb{N}_0$, $H_{mathfrak{m}_0R}^i(H_{R_+}^2(M))$ isArtinian if and only if $H_{mathfrak{m}_0R}^{i+2}(H_{R_+}^1(M))$ isArtinian, where $operatorname{cd}(R_+,M)$ is the cohomological dimension of $M$with respect to $R_+$. This improves some results of R. Sazeedeh.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576843ZK.pdf | 36KB | download |