期刊论文详细信息
Proceedings Mathematical Sciences | |
Equivalence of Quotient Hilbert Modules | |
Gadadhar Misra1  Ronald G Douglas2  | |
[1] Indian Statistical Institute, R.V. College Post, Bangalore 0 0, India$$;Texas A&M University, College Station, Texas , USA$$ | |
关键词: Hilbert modules; function algebra; quotient module; longitudinal and transversal curvature; kernel function; jet and angle.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let $mathcal{M}$ be a Hilbert module of holomorphic functions over a natural function algebra $mathcal{A}(ð›º)$, where $𛺠subseteq mathbb{C}^m$ is a bounded domain. Let $mathcal{M}_0 subseteq mathcal{M}$ be the submodule of functions vanishing to order 𑘠on a hypersurface $mathcal{Z} subseteq ð›º$. We describe a method, which in principle may be used, to construct a set of complete unitary invariants for quotient modules $mathcal{Q} = mathcal{M} ominus mathcal{M}_0$. The invariants are given explicitly in the particular case of 𑘠= 2.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506621ZK.pdf | 84KB | download |