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Abstract. Let.M be a Hilbert module of holomorphic functions over a natural function
algebrad(Q2), whereQ2 C C™" is a bounded domain. Lé¥1, € M be the submodule of
functions vanishing to orddron a hypersurfac&€ C Q. We describe a method, which

in principle may be used, to construct a set of complete unitary invariants for quotient
modulesQ = M & M,. The invariants are given explicitly in the particular case of
k=2
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1. Preliminaries

Let Q be a bounded domain i andZ C 2 be an analytic hypersurface defined (at
least, locally) as the zero set of a single analytic functiohet A(2) be the algebra of
functions obtained by taking the closure with respect to the supremum notenodrmall
functions which are holomorphic on a neighbourhoodfLet M be a Hilbert space
consisting of holomorphic functions of2. We assume that the evaluation functionals
h — h(w), h € M, w € Q are bounded. This ensures, via the Riesz representation
theorem, that there is a unique vecto(-, w) € M satisfying the reproducing property

h(w) = (h, K(-,w)), he M, we Q.

In this paper, a modul@ over the function algebrd ($2) will consist of a Hilbert space
M as above together with a continuous action of the algeti€d) in the sense of ([8],
Definition 1.2). Suppose, we are given a quotient modRlever the function algebra
A(R). This amounts to the existence of a resolution of the form

O0«— Q«—M<«— Mo<«—0, @

where My € M are both modules over the algehrg2). We make the additional
assumption that the submodulég consists of functions im which vanish to some fixed
orderk on the hypersurfacg. Then (cf. [7], (1.5)) the moduld1y may be described as

al
./\/l():{fe./\/l:a—];(z)zo, zeUNZ, Ofﬂfk—l},
2

whereU is some open subset &f.
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Let d denote the differentiation along the unit normal to the hypersufadeecall (cf.
[7]) that the map/ : M — M @ C¥ defined by

h> (h,oh, 9%h, ..., 8" 1h), he M
plays a crucial role in identifying the quotient module. The requirement that
{(en, Den, ..., 3 Ye,)u=0: (en)n=0is an orthonormal basis i }

is an orthonormal basis in rah makes the mag unitary onto its rangd M € M ® CF.
Thus we obtain a pair of modulesM and J M, whereJ Mg is the submodule of all
functions inJ M which vanish onZ. In this realisation, the modulé M consists of
holomorphic functions taking values @. Let C*k denote the linear space of alix k
matrices over the field of complex numbers. We recall that a fundfior2 x  — Ck**
satisfying

n

Y (K(wi,w,)g,-,;,>E >0, Wi ...,0n€Q, C1,....tn€E,n>0
=1
2

is said to be aonnegative definittnnd) kernelon 2. Given such an nnd kerné on €,
it is easy to construct a Hilbert spagé of functions ong taking values irC*** with the

property
(r@. ;)Ck =(f.KC o) wen, cech fem 3)

The Hilbert spaceV is simply the completion of the linear span of all vectors of the form
K(-, )¢, € Q,¢ € Ck, withinner product defined by (3). Conversely,letbe a Hilbert
space of functions oft taking values itC*. Lete,, : M — C* be the evaluation functional
defined bye, (f) = f(w), w € Q, f € M. If ¢, is bounded for each € Q, then it is
easy to verify that the Hilbert spadel possesses a reproducing kerRek, w) = e e},
that is,K (z, w)¢ € M for eachw € Q2 andK has the reproducing property (3). Finally,
the reproducing property (3) determines the reproducing keknehiquely. If e, is an
orthonormal basis itM then it is not hard to verify that the reproducing kerkehas the
representation

o0
Kz w) =) een(w)*, z,we Q,
n=0

wheree, (z) is thought of as a linear map frofito C*. Of course, this sum is independent
of the choice of the orthonormal bagissincek is uniquely determined.

The module/ M possesses a reproducing keri&l in the sense described above. Itis
natural to construct this kernel by forming the sum:

JK(z,w) =) (Jen)@)(Jen)(w)*, z,w € Q.
n=0

This prescription then allows the identification of the reproducing kefiiet @ x Q@ —
Ck*k for the module/ M:

(JK)e,j(z,w) = (3°9K)(z,w), 0<¢,j<k-1 (4)
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It is then easy to verify, using the unitarity of the mapthatJ K has the reproducing
property:

(h, JK (-, w)Z) = (h(w), ¢), w e Q, ¢ e Ck,
The module action foy M is defined in a natural manner. Indeed,J¢tbe the array
14
e j=1\J

0, otherwise

at-if), 0<t<j<k-1
)( ) J )

for f € A(Q2). We may now define the module actiontobe: h — Jf - Jh. Notice that
Jf is ak x k matrix-valued function o2 while J is the module action, that is, it is an
operator on/ M. The action of the adjoint is then easily seen to be

TTK (L w) - x=JK(Cw)(JHw)* - x, x e Ch. (6)

We will say that two modules over the algeb#d2) areisomorphicif there exists a
unitary module map between them.

Itis shown in [7] that the quotient modu is isomorphic ta/ M & J Mg. Once this is
done, we are reduced to the multiplicity free case. Thus our previous results from [6] apply
and we conclude that the quotient mod@és the restriction off M to the hypersurfacg.

Let M be any Hilbert module over the function algeb4&<2). In particular, each of
the coordinate functions;, 1 < i < m in C" acts boundedly as the multiplication
operatorM; on M. LetM denote this commuting-tuple of multiplication operators. We
denote byM* them-tuple (M7, ... , M). To eachn-tupleM, we associate the operator
Dy i M — M ® Ck defined byDyh = (M1h, ... , My,h), h € M.

The classB, (©2) was introduced in [3] for a single operator. This definition was then
adapted to the general case ofiattuple of commuting operators (cf. [4]). We ket € C™
denote the domaifw € C™ : w € Q} and say thaM™* is in B (2*) if

(i) RanDy+_y, is closed for alw € Q*,
(i) span{ker Dy+_, : w € Q*}is dense inM,
(iii) dim ker Dp+—y = n forall w € QF,

whereM™* —w = (M] —wa, ..., M} — wy).

If the adjoint of them-tuple of multiplication operators is B, (2*) (for somen €
N), then we say thatV is in B,(2*). The assumption thaté1 is in B1(2*) includes,
among other things, (a) the existence of a common eigenvegtoy € M, that is,
M}y (w) = w;y(w), forw e Q*, (b) the dimension of the common eigenspace as
1. Furthermore, it is possible to choogéw) so as to ensure that the map— y (w)
is anti-holomorphic. Thus we obtain an anti-holomorphic hermitian line buRdéver
Q whose fiber aiv is the one-dimensional subspace/ef spanned by the vector(w),
that is,y is an anti-holomorphic frame fat. In the case ok > 1, a similar construction
of an anti-holomorphic hermitian vector bundle of rankan be given. In our case, it
is easy to verify thak (-, w), the reproducing kernel at, is a common eigenvector for
them-tuple (M7, ... , M). SincekK (-, w) is anti-holomorphic in the second variable, it
provides a natural frame for the associated budl&he metric with respect to this frame
is obviously the real analytic functioki (w, w).
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Before we continue, we make the additional assumption that the mdduleshich
occurs in the resolution (1) of the quotient mod@dies in the clas®1(2*). Leti : Z —
Q be the inclusion map and : A(2) — A(Z) be the pullback. Theg is clearly also a
module over the smaller algetir%a(A(Q)). We identify this latter algebra witd(2). Let
(9, A(2)) stand forQ thought of as a module over the smaller alged«&). Although
it is possible that Q, A(2)) lies in By (Z*) wheneverM is in B1(2*), we were able
to prove it only in some special cases ([7], Proposition 3.6). However, in this paper, we
assume that the quotient modylg, A(2)) always lies inB;(Z*). These assumptions
make it possible to associate (a) an anti-holomorphic hermitian line bundieer the
domain® with the moduleM and (b) an anti-holomorphic jet bundle res =z of rank
k over the domairZ with the module(Q, A(Z2)). The details of théet construction are
given in ([7], pp. 375—-377). One of the main results in [3] states that two modulesd
M in By(R) are isomorphic if and only if the associated bundles are locally equivalent.
While the local equivalence of bundles is completely captured in the case of line bundles
by the curvature, it is more complicated in the general case (cf. [3]). We recall that the
quotient moduleQ may be described completely by specifying the action of the algebra
A (Z) = A(Z) ® CH<k (cf. [7], p. 385). The action of the algebr, (Z), in particular,
includes the multiplication induced by the local defining funciggmamely,

(JOresz - IMyresz = S Miresz.

To exploit methods of [3], itis better to work with the adjoint action. To describe the adjoint
action, we first construct a natural anti-holomorphic framet fiecessarilyrthonormal)
for the jet bundleE on Q. Let{e, : 1 < ¢ < k} be the standard orthonormal basigih
For a fixedw € @, lete; = z’gzl 1K (z, w) ® & be simply the image ok (z, w) in
JM. ltis then clear thafe; (w) : 1 < j < k}, wheree; (w) := (87 e1)(w) is a natural
anti-holomorphic frame foy E. (Of course, as is to be expectedw), 1 < ¢ < k are the
columns of the reproducing kerngK given in (4).) Thus the fiber of the jet bundfet
atw € Q is spanned by the set of vectdes (w) € JM : 1 < £ < k}.

Suppose we start with a resolution of the form (1). Then we have at our disposal the
domainQ < C™ and the hypersurfacg C Q. Let ¢ be a local defining function fog
(cf. [7], p- 367). Thery lies in A(Z) and induces a nilpotent action on each fiber of the
jet bundleJ E res z via the map/,;, that is,

(Jger)(w) = JK (-, w)(Jp)(w)*ep. )

Therefore in this picture, with the assumptions we have made along the way, we see that the
guotient module® must meet the requirement listed in (i)—(iii) of the following Definition.

DEFINITION

We will say that the modul® over the algebrad(£2) is aquotient modulén the class
Bi (2, 2) if

(i) there exists aresolution of the mod@eas in eq. (1), where the moduld appearing
in the resolution is required to be By (%),
(if) the module action orQ translates to the nilpotent actiofy on JMes =z Which is
an isomorphic copy 0@,
(iii) the module(Q, A(2)) isin By(Z*).



Equivalence of quotient Hilbert modules 285

In this paper, we obtain a complete set of unitary invariants for a mag@itethe class
B2(L2, Z). This means that the modulgadmits a resolution of the form (1) and the module
M that appears in this resolution lies B (€2). However, it is possible to considerably
weaken this latter hypothesis as explained in the Remark below.

[Remark.Although we have assumed the modwléeto be inthe clas®1(), itis interest-

ing to note that the proof of our Theorem requires much less. Specifically, the requirement
that the ‘RanDy+_,, is closed’ is hecessary to associate an anti-holomorphic vector bun-
dle with the module. However, in our case, there is already a natural anti-holomorphic
vector bundle which is deteremined by the frame> K (-, w). Indeed, if we assume that

the moduleM contains the linear spade of all the polynomials and is dense inM,

then the eigenspace atis forced to be one dimensional. (To prove this, merely note that
for any eigenvectox atw and all polynomialy, we have

(p,x) = (M1, x) = (1, M;x) =pw){L, x) = (p,cK(,w)),
wherec = (1, x). It follows thatx = ¢K (-, w).) Finally, the linear span of the set of
eigenvector$K (-, w) : w € Q} is a dense subspace of the modme Therefore, for our
purposes, it is enough to merely assume that

(&) M is a Hilbert module consisting of holomorphic functionsn
(b) the moduleM contains the linear space of all polynomigfsand thatP is dense,
(c) M possesses a reproducing keriel

It is then clear that the same holds for the quotient modylerhereP consists ofCk-
valued polynomials and& takes values itC**k. Hence, ifx is an eigenvector ab for
the module(Q, A(Z2)), we claim that it belongs to the range &f(., w) which is thek-
dimensional subspad& (-, w)v € Q : v € Ck} of Q. As before, for 1< j < k, let ej be
the standard unit vector iG* andp = Z,lle pj ®e¢; be aCk-valued polynomial. Then
we have(p, x) = Y5 (M, 8. x) = Y4 (e M} x) = Yh_ipiw)iej, x)
= Yh _ip K w)e;)(ej, x) = (p, Yk 1K, w)s,), wherec; = (¢;, x). Thusx is
in the range o (-, w) as claimed. Therefore the dimension of the eigenspawesguals
the dimension of rang& (., w) which isk.]

We now raise the issue of adapting the techniques of [3] to find a complete set of unitary
invariants for characterizing the quotient moduf2sn the classB (2, Z). While the
methods described below will certainly yield results in the general case, we have chosen
to give the details of our results in the cas& ef 2. The reason for this choice is dictated
by the simple nature of these invariants in this case. Furthermore, these are extracted out
of the curvature and the canonical metric for the burile

2. Canonical metric and curvature

Let M be amodule irB1(2*) and the reproducing kerng&l(-, w) be the anti-holomorphic
frame for the associated bundie If M is another module in the clas® (2*) with
reproducing kernek (-, w), then it is clear that any isomorphism between these modules
must mapK (-, w) to a multipley (w) of K (-, w), wherey (w) is a non zero complex

number forw € Q. Moreover, the map — v (w) has to be anti-holomorphic. It follows
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that M and M are isomorphic if and only iK (z, w) = ¥ (z)K (z, w)¥ (w) (cf. [4],
Lemma 3.9) for some anti-holomorphic functign There are two ways in which this
ambiguity may be eliminated.

The first approach is to note that if the two modulesand.M are isomorphic, then
K(z,2)/K (z,z) = |¥(2)|2 Sincey is holomorphic, it follows that

> 8:9;l0g (K (z,2)/K (z,2))dzi AdZj = 0. (8)
i,j=1

On the other hand, if we have two modules for which equation (8) holds, then the preced-
ing argument shows that they must be isomorphic. It is then possible to find, in a small
simply connected neighbourhood of some fixed paigt a harmonic conjugate(w)

of the harmonic function(w) := log K (w, w)/K (w, w). The new kernel defined by

Ié(z, w) = expu(z) + iv(2)K (z, wyexplu(w) + iv(w)) detgrmines a modulé1 iso-
morphic toM but with the additional property that the metdt(w, w) = K (w, w). Itis

then easy to see that the map takiki¢, w) to K (-, w) extends linearly to an isometric
module map. Therefore_fjff’j:l 3;0; 109 K (z, 2)dz; A dZ; is a complete invariant for the
module M

The second approach is to normalise the reproducing kérrtbht is, define the kernel
Ko(z, w) = ¥ (2)K (z, w)¥ (w), wherey (z) = K (z, wo) 1K (wo, wo)¥/2 for z in some
open subse®g € Q and some fixed but arbitranyg € Qo. Also, Qo can be chosen so
as to ensureres o, # 0. This reproducing kernel determines a module isomorphietto
but with the added property th&f(z, wo) is the constant function 1. $1 andM are two
modules inB1(2*), then it is shown in ([4], Theorem 4.12) that they are isomorphic if and
only if the normalisations o and K of the respective reproducing kernels at some fixed

point are equal. As before, it is then easy to see that the map t&kinagv) to K (-, w)
extends linearly to an isometric module map. The normalised kékpet therefore a
complete unitary invariant for the module!.

Notice that if a moduleM is isomorphic taM, then the module map is induced by a
nonvanishing functiomb on , that is,I' = Mg ([4], Lemma 3.9). Consequently, #1g
is the submodule of functions vanishing to ordem Z, thenI" (M) is the submodule of
functions vanishing to orderin M. It follows that if M and M are isomorphic modules,
then the corresponding quotient modules must be isomorphic as well. Therefore we can
make the following assumption without any loss of generality.

Hypothesis.Now we make a standing hypothesis that the kernel for the modidgpear-
ing in the resolution of the quotient modui®is normalised.

Recall that ifE is a hermitian holomorphic vector bundle of rahlover the domain
Q2 € C", then it is possible to find a holomorphic frarme= (s1, ... , sx) such that (a)
(si(wo), sj(wo)) =1, (0)3;(S(w), S(W))jw=wy = 0for1 < j < m(cf.[12], Lemma 2.3).
We offer below a variation of this Lemma for the jet bundl& corresponding to the
hypersurfaceZ C Q and the Hilbert modulg in the classB1(2). We state the following
Lemma in terms of a frame for the bundle associated with the mo#tl& here is an
obvious choice for such a frame in terms of the reproducing kernel of the module. The
relationship between the reproducing kernel of the module and the hermitian metric of
the associated bundle was explained in ([7], § 2).(séb), S(wg)) be the matrix of inner
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products, that is(s(w), S(wg))ij = (si(w), s;(wo))m, 1 < i, j < k for some fixed but
arbitrarywg € Z and allw € Z.

Lemma. LetM be Hilbert module inB1(2) and Mo € M be the submodule consisting
of functions vanishing on the hypersurfa€ec 2. Then there exists an anti-holomorphic
framesfor the jet bundle JE satisfying

(s, swoesz = (3 50)-

for w € Z and some anti-holomorphic functighon Z.

Proof. Let us assume, without loss of generality, that = 0. We first observe that if

we replace the modulé1 by an isomorphic copy, then the class of the associated bundle
JE does not change. Indeed At and M are isomorphic modules, then there is an anti-
holomorphic mapy which induces a metric preserving bundle map of the associated
bundlest andE. Itis then clear that the mafy induces a bundle map of the corresponding
jet bundles. Therefore, we may assume that the reproducing kérfioetthe moduleM is
normalised, that isK (z, 0) = 1. Let(zZ, w) denote (temporarily) the normal coordinates
in Q x Q. From the expansion

o0
K(z,w) = Z Kon(z, w)ZKuUn, ZL,weZ
£,n=0

itis clear thatKy, (z, 0) = 0 for £ # 0 andn = 0. SincekK (z, w) = K (w, z), it follows
thatK, (0, w) = 0 for ¢ = 0 andn # 0. However,Ky,(z, w) = (30" K)|z=0.5=0(z, W).
Hence (K (z. w))§ Lo = JKjresz(z, w) for z,w € Z by definition (4). Recall that
er(w) = Z’;zl 3197 1K (-, w) ® &, for 1 < ¢ < k is an anti-holomorphic frame for
the jet bundle/ E. It follows that {e¢ (w), e, (0)) = (JK)en (0, w). But (J K )gn (0, w) =
K¢ (0,w) = 0for¢ = 0 as long as # 0. The proof is completed by takirgjw) =
{er(w), ..., ex(w)}. ]

There is a canonical connectiénon the bundle/ £ which is compatible with the metric
and has the propert®” = 9. Let C1%(Q, E) be the space af sections of the bundle

AEDT*Q ® E. The curvature tensd€ associated with the canonical connectidris in
C11(82, herm(E, E)). Moreover, ifh is a local representation of the metric in some open
set, then K = d(h~19h). The holomorphic tangent bunderes z naturally splits as

T Z+N Z, whereN Z is the normal bundle and is realised as the quoti&fes z /T Z.
The co-normal bundl&/* Z is the dual ofN¥ Z; it is the sub-bundle of Qs z consisting

of cotangent vectors that vanish @12 C T'Qes z. Indeed, the class of the conormal
bundleN*Z coincides with |- Z]res z via the adjunction formula I ([10], p. 146). Léy

be the projection onte&y* Z and P, = (1— Py) be the projection ont@* Z. Now, we have

a splitting of the(1, 1) forms as follows:

2
A(l,l)T*eresZ — Z Pl( /\(1,0) T*eresz) A P]( /\(0,1) T*Q|resz)'
i,j=1
Accordingly, we have the component of the curvature along the transversal direcon to
which we denote byCirans Clearly,Kians= (P1® 1)K res z. Similarly, let the component
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of the curvature along tangential directionsdde Kian. Again, Kian = (P2 ® 1)Kjres =
(Here! is the identity map on the vector space héEmE).)

Recall that the fiber of the jet bundleE s z atw € Z is spanned by the set of vectors
91K (-, w), 1 < £ < k. Thus the module actiom;f can be determined by calculating
it on the se{d‘ 1K (-, w) : 1 < ¢ < kandw e Z}. This calculation is given in eq. (7).
We therefore obtain an anti-holomorphic bundle nigion the bundle/ Ejres z. Thus the
isomorphism of two quotient modules By (2, Z) translates to a question of equivalence
of the pair(JEjres z, J(;‘). This merely amounts to finding an anti-holomorphic bundle
mapt : J Ejresz — J Ejres z Which intertwines/7. Itis clear that if we could find such a
bundle map, then the line sub-bundles corresponding to the fr&te w), w € Z must
be equivalent. From this it is evident that the curvatuées, in the tangential directions
must be equal. Also, we can calculate the matrix representation for the nilpotent action at
w, as given in (7), with respect to the orthonormal basis obtained via the Gram—-Schmidt
process applied to the holomorphic frameuatA computation shows that the matrix
entries involve the curvaturé&;ansin the transverse direction and its derivatives. It is not
clear if the intertwining condition can be stated precisely in terms of these matrix entries.
In the following section we show, as a result of some explicit calculation, thatif2
then the curvature in the transverse direction must also be equal. We also find that an
additional condition must be imposed to determine the isomorphism class of the quotient
modules.

3. The case of rank 2 bundles
In this case, the adjoint action @fon Q = J M|,es z produces a nilpotent bundle map
on J E which, atw € Z, is described easily:

ew) = (1)) — 0and@e)(w) = (250" ) - Ge)(wyew)

on the spanning sét(w), (de)(w) : w € Z} for the fiberJE (w) of the jet bundle/E at
w € Z.Thusthe adjointactioninduced byletermines a nilpoteM (w) of order 2 defined

by (0 (¢) (w)

0 0 on each fibelVE (w), w € Z with respect to the basig(w), (3e)(w)}.

Now, consider the orthonormal basfsp(w), y1(w)}, where
yo(w) = [le(w)||e(w),
y1(w) = a(w)e(w) + b(w)(@e)(w), w € Z.

The coefficients:(w) andb(w) can be easily calculated (cf. [3], p. 195):

—a(w)llew)|® = ((3e) (w), e(w)) (—Kyrandw)) "2,
b(w)lle(w)| = (—Kuandw)) Y2,

whereCrandw) denotes the curvature in the transversal direction. In the case of a line
bundle, we have the following explicit formula:

m
Kiransdw) = Pl(

0.3, log lle(w)|%dz; A dZ;), w e 2. 9)
i,j=1
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The nilpotent actiorVorin(w) at the fiber/E(w), w € Z with respect to the orthonormal
basis{yo(w), y1(w)} is given by

(0 b(W)Ile(w)||(3</>)(w)>
0 0 '

Now, we are ready to prove the main theorem which gives a complete set of invariants
for quotient modules in the clags (2, Z). At first, it may appear that the condition angle
of the theorem stated below depends on the choice of the holomorphic frame. But we
remind the reader that the normalisation of the keknébr the moduleM ensures that it
is uniquely dtermined. Therefore soJX .

Theorem. If Q and Q are two quotient module®ver the algebra4(), in the class
B2(%2, Z), then they are isomorphic if and only if

tan: Kian = ’etarl
tranS:Ktr_anSZ Ktrans _
angle:((de)(w), e(w)) = ((3&)(w), e(w)).

Proof. Suppose, we are given two quotient modufeandQ which are isomorphic. Then
the module magb : Q — Q induces an anti-holomorphic bundle mé&p: JE|esz —
JE‘resz. Forw € Z, let JE(w) andJE (w) denote the two dimensional space spanned by
{e(w), (de)(w)} and{é(w), (3¢)(w)}, respectively. Then the bundle mémlefines alinear
map®(w) : JE(w) — JE(w). The mapd (w) must then intertwine the two nilpotents

N (w) andN (w) which implies thatb (w) must be of the fornd (w) = (“(Ow) b ),Where

a, B are anti-holomorphic functions fav in some small open set ifi. We observe that

@ (w) mapsyp(w) to a(w)||é(w)||[le(w) ||~ Lo(w). Sinced (w) is an isometry, it follows
thata(w) = |le(w)||[|é(w)|| 1. Because we have chosen to work only with normalised
kernels, we infer thajje(w)||[|é(w)| "1 = 1 for all w € Z which is the same as saying
thata(w) = 1 forw € Z. The condition ‘tan’ of the theorem is evident.

The module map has to satisfy the relation
JK (z, w) = ®(@)JK (z, w)®(w), z,w € Z.

However,JK (z, 0) = ((1) S(OZ)), and similarlyK at(z, 0) has a matrix representation with

S replaced byS. Now, evaluate the formula relatingk andJK atw = 0 to conclude
thatg(z) = Oforallz € Z.

Now, sinced (w) has to preserve the inner products, it follows tf@e) (w), e(w)) —
((38)(w), é(w)) = B(w)]le(w)|?. Hence it follows that{(de)(w), e(w)) = ((3&)(w),
¢(w)) which is the condition ‘angle’ of the theorem.

Finally, the requirement that the nilpotetN$w) andN (w) must be unitarily equivalent
foreachw € Z amounts to the equality of thi&, 2) entry of Norn(w) with that of Nostn(w).
Since we have already ensurge(w)|| = [|é(w)], it follows thatb(w) = b(w). This
clearly forces the condition ‘trans’ of the theorem which completes the proof of necessity.

For the converse, first prove that the natural map fodw) to JE (w), w € Z, which
carries one anti-holomorphic frame to the other is an isometry. It is evident that this map,
which we denote by (w), defines an anti-holomorphic bundle map and that it intertwines
the nilpotent action.

To check if ®(w) is isometric, all we have to do is see if it automatically maps the
orthonormal basi§/(w), y1(w)} to the corresponding orthonormal bagis(w), y1(w)}.
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Clearly,® (w) (yo(w)) = &(w)lle(w)[| = = Jo(w)[[é(w) ] lle(w) |~ . Suppose that the two
curvatures corresponding to the bundiésand JE agree on the hypersurfa¢e Then it

is possible to find sections of these bundles which have the same norm. Or, equivalently,
we may assume thdito(w)| = ||yo(w)]l. It then follows that® (w)(yp(w)) = 7o(w).

Notice that

() (1 (w)) = a(w)é(w) + b(w)(3e)(w)
= a(w)[[Ew)l[Fow) + b(w)(b(w)) *(Fr(w)
— a(w)lléw)) || 7o(w)
= (a(w)b(w) — @(w)bw))[Ew)l(b(w))  fo(w)
+ b(w) (b(w) M (w).

A simple calculation shows that

a(w)b(w) — a(w)bw) = lle(w)|3éw)l (=K w)) V(=K (w)) =2
(((Be)(w), e(w)) — (&) (w), &(w))).

Itfollows that® (w) mapsy1(w) to 1 (w) ifand only ifb(w) = b(w) and((de)(w), e(w)) =
((0e)(w), e(w)). 3

We have therefore shown that the two bundi&sand JE are locally equivalent (via the
bundle mapJ¢). We now apply the Rigidity Theorem ([3], p. 202) to conclude that the
two modulesQ andQ must be isomorphic. ]

It is not clear if the condition ‘angle’ of the theorem can be reformulated in terms of
intrinsic geometric invariants like the second fundamental form etc.

Inthe cas& > 2, if we show that the bundle map is the identity transform on each of the
fibers, then it will follow that the matrix entries of the two nilpotent actions on each of these
fibers must be equal. These entries are expressible in terms of the curvature in the transverse
direction and its normal derivatives. So if two quotient modules are isomorphic, then it
follows that these quantities must be equal. However, we are not sure what a replacement
for the condition ‘angle’in the theorem would be.
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