FEBS Letters | |
Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines | |
Chen, Liangbiao1  Xu, Qianghua1  Peng, Xiaoning3  Ling, Xuefeng Bruce4  Du, Wei2  Peng, Sihua2  | |
[1] College of Life Sciences, Zhejiang University, Hangzhou 310029, PR China;National Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, PR China;Department of Molecular Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA;Tularik Inc., South San Francisco, CA 94080, USA | |
关键词: Microarray; Support vector machine; Genetic algorithm; Recursive feature elimination; Cancer; LOOCV; leave-one-out cross-validation; GA; genetic algorithm; SVM; support vector machine; RFE; recursive feature elimination; AP; all paired; | |
DOI : 10.1016/S0014-5793(03)01275-4 | |
学科分类:生物化学/生物物理 | |
来源: John Wiley & Sons Ltd. | |
【 摘 要 】
Simultaneous multiclass classification of tumor types is essential for future clinical implementations of microarray-based cancer diagnosis. In this study, we have combined genetic algorithms (GAs) and all paired support vector machines (SVMs) for multiclass cancer identification. The predictive features have been selected through iterative SVMs/GAs, and recursive feature elimination post-processing steps, leading to a very compact cancer-related predictive gene set. Leave-one-out cross-validations yielded accuracies of 87.93% for the eight-class and 85.19% for the fourteen-class cancer classifications, outperforming the results derived from previously published methods.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912020313643ZK.pdf | 282KB | download |