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Abstract Simultaneous multiclass classi¢cation of tumor types
is essential for future clinical implementations of microarray-
based cancer diagnosis. In this study, we have combined genetic
algorithms (GAs) and all paired support vector machines
(SVMs) for multiclass cancer identi¢cation. The predictive fea-
tures have been selected through iterative SVMs/GAs, and re-
cursive feature elimination post-processing steps, leading to a
very compact cancer-related predictive gene set. Leave-one-out
cross-validations yielded accuracies of 87.93% for the eight-
class and 85.19% for the fourteen-class cancer classi¢cations,
outperforming the results derived from previously published
methods.
, 2003 Published by Elsevier B.V. on behalf of the Federation
of European Biochemical Societies.
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1. Introduction

Microarray technology allows the genomic-scale study of
biological processes through simultaneous monitoring of the
relative expression values of thousands of genes. One of the
most promising applications of the technology is molecular
diagnosis, by which the nature of biological samples could
be identi¢ed based on their gene expression data [1^13]. In
principle, molecular cancer diagnosis can be mathematically
formulated as classi¢cation tasks. Most previous studies [1^3,
5,7,14] in this area o¡er algorithmic solutions for binary clas-
si¢cations, e.g. tumor versus normal tissue, positive treatment
e¡ect versus no response. Because of the large number of
cancer types and subtypes, it is imperative to develop multi-
class tumor identi¢cation methodologies for practical cancer
diagnosis purposes. The rank-based gene selection binary clas-
si¢cation methodologies [15], however, cannot be extended to
produce comparable accuracies for simultaneous multiclass
classi¢cation. Therefore, some hybrid methods [8^10,13]

have been developed to statistically derive con¢dent multiclass
tumor classi¢ers utilizing one versus all (OVA) or all paired
(AP) binary support vector machine (SVM) [16] classi¢ca-
tions. E¡ective feature reduction and identi¢cation of discrim-
inant genes can lead to novel clinical reagents and be of prac-
tical interest to multiclass tumor medical diagnostic tests.
Recursive feature elimination (RFE [8]), genetic algorithm
(GA [7,13,17,18]) and ranking [10] approaches have been em-
ployed in order to yield a compact biologically relevant pre-
dictive gene set.
In this report, we have combined the methodologies of GA,

AP/SVM, RFE to take the inherent advantages of these algo-
rithms for array-based multiclass tumor classi¢cation. Pro-
cessing the public NCI60 and GCM data sets, our algorithm
enables the selection of a very small discriminant gene set and
high leave-one-out cross-validation (LOOCV) accuracies, out-
performing previously described methods.

2. Materials and methods

2.1. Data sets
The NCI60 data set is as previously described ([4,19], http://www-

genome.wi.mit.edu/mpr/NCI60/NCI_60.expression.scfrs.txt for pre-
processed, and http://genome-www.stanford.edu/sutech/download/
nci60/index.html for processed respectively). A subset of NCI60
containing 58 samples belonging to eight cancer types was used
in this study http://¢shgenome.org/publication/pengsihua/pengetal-
FEBS2003.htm. The GCM data set is as described by Ramaswamy
et al. ([8], http://www-genome.wi.mit.edu/cgi-bin/cancer/publications/
pub_paper.cgi?mode= viewppaper_id= 61). The leukemia data set is
as previously described ([2] http://www-genome.wi.mit.edu/cgi-bin/
cancer/datasets.cgi). The colon data set was as described ([1] http://
microarray.princeton.edu/oncology/a¡ydata/).

2.2. Classi¢cation strategies
Our multiclass classi¢cation algorithm consists of the following

steps: a pre-¢ltering process to result in a set of genes di¡erentially
expressed across various cancer types; binary tumor classi¢cations via
AP/SVM classi¢er; a voting scheme to go from binary to multiclass
classi¢cation based upon AP/SVM results; GA feature selection and
multiclass classi¢cation optimization via LOOCV ¢tness test; RFE
through AP/SVMs and LOOCV test to further eliminate the non-
predictive features in the GA-derived gene set.
2.2.1. Pre-¢lter processing. As shown in Fig. 1, there were only a

small number of genes in the NCI60 and GCM data sets that were
di¡erentially expressed across various cancer types. Prior to the ma-
chine learning procedure, features (genes) with lower standard devia-
tions among the various tumor types were removed. A total of 1994
genes of the NCI60 data set were selected, the standard deviation
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ranging from 78.878 to 5871.2. Two thousand genes of the GCM data
set were selected, the standard deviation ranging from 682.6 to 8196.1.
2.2.2. AP/SVM and multiclass classi¢cation voting. The core algo-

rithm of SVM in this study comes from LibSVM (http://www.csie.
edu.tw/Vcjlin). The AP approach was used, in which k(k31)/2 clas-
si¢ers were constructed to classify two di¡erent tumor classes (k is the
number of tumor types). In the SVM procedure, three di¡erent types
of kernel functions (linear, polynomial, and radial basis) are included
in the algorithm. We found that polynomial kernels yielded better
results than Gauss and sigmoid kernels. Integers between 1 and 8
were tested for the optimal value for the power of the polynomials.
Our results showed that the best performance was obtained when the
power of the polynomial was 4.
Going from binary to multiclass tumor classi¢cation, a voting strat-

egy was used: each binary classi¢cation is considered to be a vote
where votes can be cast for all testing samples; and at the end, a
sample is assigned to a particular tumor class with the maximum
number of binary classi¢cation votes. When two classes have identical
votes, the one with the smaller index is selected.
2.2.3. LOOCV and GA. LOOCV is as previously described [20].

LOOCV of the multiclass classi¢cation results served as the GA’s
¢tness test. Our source code was developed by modifying from Ooi

et al. [13], and can be downloaded from http://¢shgenome.org/publi-
cation/pengsihua/pengetalFEBS2003.htm. Two selection methods are
employed to select the population individuals for the mating pool: (1)
stochastic universal sampling (SUS) and (2) roulette wheel selection
(RWS). Uniform and one-point cross-overs exchange subparts of the
two chromosomes. Our results showed that the RWS strategy is better
than the SUS strategy as a selection operation and the uniform strat-
egy is better than one-point cross-over as a cross-over operation. The
computation was di⁄cult to converge when the crossover probability
Pc was set to be less than 0.8. When Pc ranges from 0.98 to 1.0, our
experiments showed that relatively better results were achieved. To
optimize mutational probability Pm, we tried more than 10 Pm values
from 0.0005 to 0.02 and found: when Pms 0.1, the computation did
not converge, the ¢tness oscillated along a lower value; when
Pm6 0.001, the ¢tness did not improve unless large generation of
GA was set; optimal Pm values were determined to be between
0.004 and 0.006. Generation in GA was initially set to 100 000 and
¢ne-tuned to ¢nalize for each classi¢cation process gauged by
LOOCV rate: colon tumor binary classi¢cation, 31 527; acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL) binary
classi¢cation, 1219; NCI60 multiclass classi¢cation, 6729; GCM,
12 765. We tried di¡erent population sizes and found that values be-
tween 6 and 40 yielded the best results. We set the GA population size
as 12 for binary classi¢cation (colon tumor and AML/ALL) and 30
for multiclass classi¢cation (NCI60 and GCM). GA chromosome size
was set between 36 and 40. Since we employed a RFE post-processing
step after the GA/AP-SVM process, the ¢nal selected feature number
was smaller than the GA chromosome size.
2.2.4. RFE post-processing. Our AP/SVM RFE is adapted from

the previous OVA/SVM RFE by Ramaswamy et al. [8]. Each AP/
SVM classi¢er is ¢rst trained with all GA-derived genes, then one
feature is removed, and each classi¢er is retrained with the smaller
gene set. If LOOCV of the multiclass classi¢cation demonstrates that
the accuracy remains the same or improves, then this gene feature is
permanently eliminated from the predictive gene set. This procedure is
repeated iteratively to derive the ¢nal predictive gene set.

2.3. Microarray data clustering and expression pattern visualization
Gene Cluster 3.0 (http://bonsai.ims.u-tokyo.ac.jp/Vmdehoon/

software/cluster/software.htm) and Java TreeView (http://genetics.
stanford.edu/Valok/TreeView) tools were used as instructed.

3. Results and discussion

Table 1 summarizes our algorithm GA/SVM parameters,
feature gene selection, and the LOOCV results. The best ¢t-
ness we obtained from binary classi¢cations was 100% for
subtyping of leukemia (AML and ALL) with six genes, and
93.55% for colon tumor classi¢cation with as few as 12 genes.

Fig. 1. Standard deviation of the expression level of each gene in
the GCM and NCI60 data sets. It is apparent that only a fraction
of genes (the genes around #7500 in the NCI60 data set and the
genes around #16000 in the GCM data set) showed strong expres-
sion di¡erentiation among the studied tumor types, and are suitable
for subsequent classi¢cation purposes.

Table 1
The parameters and outcome of the GA/SVM in the four data sets

Data set GA SVM Predictive Gene Set

Number of features LOOCV (%)

Leukemia Uniform Pc = 1 6 100.0
Pm =0.005 Poly

RWS Popsize= 12 Degree= 4
n=1219

Colon Uniform Pc = 1 12 93.55
Pm =0.006 Poly

RWS Popsize= 30 Degree= 4
n=31 527

NCI60 Uniform Pc = 1 27 87.93
Pm =0.005 Poly

RWS Popsize= 30 Degree= 4
n=6729

GCM Uniform Pc = 0.98 26 85.19
Pm =0.002 Poly

RWS Popsize= 30 Degree= 4
n=12 765
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Our results were either comparable or superior to those pre-
viously reported [2,4,8,13].
As for multiclass tumor classi¢cation (Tables 1 and 2), the

LOOCV results showed 87.93% for the NCI60 data set, and
85.19% for the GCM data set. When compared with previ-
ously described algorithms, our methods yielded obvious im-
provements: two-dimensional hierarchical clustering achieved
81% LOOCV for the NCI60 data set; OVA/SVM achieved
LOOCV of 78% by Ramaswamy et al. [8] and 81.25% by

Yeang et al. [9] for the GCM data set; OVA/KNN (K nearest
neighbor) achieved 72.92% LOOCV [9] for the GCM data set;
GA/MLHD achieved LOOCV of 85.37% for the NCI60 data
set and 79.33% for the GCM data set.
Our results demonstrate that the combination of the GA

algorithm with SVM bestows many characteristics bene¢cial
to microarray data analysis. GA di¡ers substantially from
other traditional search and optimization methods; they
search a population of points in parallel (one generation),

Fig. 2. Expression pro¢les of the predictor genes in the NCI60 data set (A), and the GCM data set (B). The x-axis denotes the tumor types.
The accession numbers and brief descriptions of the predictor genes are shown along the y-axis. An asterisk by the gene description indicates
the description was obtained through sequence homology search in the NCBI database. Red colored small squares represent up-regulated
events, with the intensity of the redness indicating the degree of up-regulation. Green squares indicate unchanged expression levels and the
black color represents down-regulated events, with the intensity of darkness re£ecting the degree of down-regulation. In the ¢gure, NSCLC de-
notes non-small-cell lung carcinoma; OVAR, ovary; LEUK, leukemia; MELAN, melanoma; and CNS, central nervous system.
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rather than searching for a better result from point to point,
e.g. simulated annealing. GA does not need derivative infor-
mation or other auxiliary knowledge; only the ¢tness levels
determine the directions of the search. SVM can easily deal
with a large number of features (thousands of genes) and a
small number of training patterns (dozens of patients), and is
robust with noise. SVM also has the ability to avoid over-
¢tting, which imposes an essential advantage over other meth-
ods. The number of support vectors selected by the learning
algorithm is usually small, even with a large training data set.
This characteristic would be essential even if the whole ge-
nome chip is used in the near future.
In this paper, we address the problem of selection of a

compact subset of genes for simultaneous multiclass tumor
classi¢cation. As shown in Table 2, our method signi¢cantly
eliminated gene redundancy and yielded a more compact and
unique gene subset: 27 out of 7129 genes in the NCI data set
and 26 out of 16 063 genes in the GCM data set were consis-
tently selected. Resembling the situation previously described
[13], our gene set barely overlapped with those selected by
other algorithms. Few selected genes matched the top 50 genes
reported by Golub et al. [2]. Interestingly, although GA was
employed in both studies, the two feature gene sets selected by
our GA/AP SVM/RFE and the previously described GA/
MLHD [13] shared only three common feature genes
(D51292-cyclophilins, X12876-keratin 18, and AA416963-
H2A.J2) from the GCM data set and none from the NCI60
data set. Detailed descriptions of the selected feature genes
and their non-overlapping relationships with those previously
published are shown in Supplementary materials (Tables 1
and 2 in http://¢shgenome.org/publication/pengsihua/penge-
talFEBS2003.htm).
In the NCI60 data set (Fig. 2A), Z29678 (MitF), HG1828

(nexin) and U07919 (ALDH6) were strongly up-regulated in
melanoma, but very rarely up-regulated in other tumor types.
It is known that MitF is crucial for the survival and prolifer-
ation of melanocyte and melanoma cells [21], and the involve-
ment of nexin [22] and ALDH [23] in metastasis of other types
of tumors was reported. X07979 (integrin L1) and the Z19554
(vimentin) gene were not expressed in the colon cancer and
leukemia samples but were strongly up-regulated in other
types of tumors. M21388 (Ig W chain) and X07979 (integrin
L1) were identi¢ed showing inverse regulation patterns by this
algorithm in Colon, Renal and CNS tumor categories.
In the GCM data set (Fig. 2B), the correlation between the

patterns of gene regulation and the tumor types was more
apparent. The selected genes can be easily divided into a
few groups according to their expression across the 14 tumor
types. For example, bulks of genes (from AA425782 down to
AA415788) are strongly up-regulated in CNS, leukemia, lym-

phoma and prostate cancer types, but were not or only spo-
radically induced in the others. AB006781 (galectin-4) was
only up-regulated in colorectal and pancreas cancers, while
expression of AA486890 (surfactant) was more restricted to
lung cancers. A negatively regulated gene, AA430674, showed
neat opposite expression patterns to the gene R12974 (ECE-1,
endothelin converting enzyme 1), as well as the gene
AA425782 (unknown gene), in various tumor types.
AA430674 appears to be a putative G protein-coupled recep-
tor GPCR41-like protein based upon homology search to
NCBI database.
As revealed by Fig. 2, some selected genes did not demon-

strate uniform expression patterns within individual samples
of the same tumor type. These results suggest newer unappre-
ciated taxonomies or re£ect contributions from contaminating
non-neoplastic cells, reinforcing notions brought up by pre-
vious observations [8].
In conclusion, we have combined GA, SVM, and RFE for

array-based multiclass cancer classi¢cation. In comparison
with previously described methodologies, our algorithms
achieved higher accuracies, and derived a compact set of can-
cer-relevant predictive genes.
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