| Journal of Nuclear Medicine | |
| 18F-FDG PET Reveals Frontotemporal Dysfunction in Children with Fever-Induced Refractory Epileptic Encephalopathy | |
| Viviane Bouilleret1  Catherine Chiron1  Lucie Hertz-Pannier1  Verne Caviness1  Michel Mazzuca1  Frederique Archambaud1  Sebastian Rodrigo1  Isabelle Jambaque1  Olivier Dulac1  | |
| 关键词: PET; epilepsy; encephalopathy; child; cognitive impairment; | |
| DOI : 10.2967/jnumed.110.077214 | |
| 学科分类:医学(综合) | |
| 来源: Society of Nuclear Medicine | |
PDF
|
|
【 摘 要 】
Fever-induced refractory epileptic encephalopathy in school-age children (FIRES) is a recently described epileptic entity whose etiology remains unknown. Brain abnormalities shown by MRI are usually limited to mesial-temporal structures and do not account for the catastrophic neuropsychologic findings. Methods: We conducted FIRES studies in 8 patients, aged 6–13 y, using 18F-FDG PET to disclose eventual neocortical dysfunction. Voxel-based analyses of cerebral glucose metabolism were performed using statistical parametric mapping and an age-matched control group. Results: Group analysis revealed a widespread interictal hypometabolic network including the temporoparietal and orbitofrontal cortices bilaterally. The individual analyses in patients identified hypometabolic areas corresponding to the predominant electroencephalograph foci and neuropsychologic deficits involving language, behavior, and memory. Conclusion: Despite clinical heterogeneity, 18F-FDG PET reveals a common network dysfunction in patients with sequelae due to fever-induced refractory epileptic encephalopathy.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912010197900ZK.pdf | 812KB |
PDF