期刊论文详细信息
Data Science Journal
Detecting Family Resemblance: Automated Genre Classification
Yunhyong Kim1  Seamus Ross1 
[1] Digital Curation Centre (DCC) & Humanities Advanced Technology Information Institute (HATII), University of Glasgow
关键词: Automated genre classification;    Metadata;    Scientific information;    Information management;    Information extraction;   
DOI  :  10.2481/dsj.6.S172
学科分类:计算机科学(综合)
来源: Ubiquity Press Ltd.
PDF
【 摘 要 】

References(40)This paper presents results in automated genre classification of digital documents in PDF format. It describes genre classification as an important ingredient in contextualising scientific data and in retrieving targetted material for improving research. The current paper compares the role ofvisual layout, stylistic features, and language model features in clustering documents and presents results in retrieving five selected genres (Scientific Article, Thesis, Periodicals, Business Report, and Form) from a pool of materials populated with documents of the nineteen most popular genres found in our experimental data set.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300404505ZK.pdf 379KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:24次