期刊论文详细信息
Cellular Physiology and Biochemistry
The Long Non-Coding RNA SNHG1 Attenuates Cell Apoptosis by Regulating miR-195 and BCL2-Like Protein 2 in Human Cardiomyocytes
Ning Zhang1 
关键词: Cardiomyocyte;    Hydrogen peroxide;    Apoptosis;    SNHG1;    miR-195;    BCL2L2;   
DOI  :  10.1159/000494514
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background/Aims Long non-coding RNAs (lncRNAs) are theorized to play key roles in the development of heart diseases. However, the role of lncRNAs in cardiomyocyte apoptosis is largely unknown. The present study examined the role of lncRNA SNHG1 in the human cardiomyocytes (HCMs) apoptosis and explored the underlying molecular mechanisms. Methods SNHG1, miR-195 and mRNA expression was detected by qRT-PCR; protein level was determined by western blot; cell viability was detected by MTT assay; cell apoptosis was evaluated by flow cytometry and caspase-3 activity assay; the interaction between SNHG1 and miR195 was examined by using luciferase reporter assay. Results Hydrogen peroxide (H2O2) treatment significantly suppressed cell viability and increased cell apoptotic rate and caspase-3 activity in HCMs. Overexpression of SNHG1 attenuated the effects of H2O2 on HCMs viability and apoptosis; while SNHG1 exerted the opposite effects. SNHG1 was found to sponge miR-195 and suppress the expression of miR-195 in HCMs. Overexpression of miR-195 suppressed cell viability and induced apoptosis in HCMs, and miR-195 was found to negatively regulate the expression of BCL-2 like protein 2 (BCL2L2) via targeting its 3’ untranslated region. Overexpression of BCL2L2 partially reversed the effects of miR-195 overexpression on cell viability and cell apoptosis of HCMs. MiR-195 overexpression or BCL2L2 knockdown attenuated the effects of SNHG1 overexpression on cell viability, cell apoptosis and protein levels of cleaved caspase-3, cleaved caspase-9 and Bax in H2O2-treated HCMs. Conclusion Our results suggest a novel SNHG1/miR-195/BCL2L2 axis in the regulation of cardiomyocyte apoptosis. Modulation of SNHG1 may represent a novel strategy to treat cardiomyocyte apoptosis-related heart diseases.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201910254911365ZK.pdf 3109KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:3次