学位论文详细信息
Effects of hydrodynamic culture on embryonic stem cell differentiation:cardiogenic modulation
Embryonic stem cells;Embryoid body;Hydrodynamic;Bioprocessing;Differentiation;Cardiomyocyte
Sargent, Carolyn Yeago ; Biomedical Engineering
University:Georgia Institute of Technology
Department:Biomedical Engineering
关键词: Embryonic stem cells;    Embryoid body;    Hydrodynamic;    Bioprocessing;    Differentiation;    Cardiomyocyte;   
Others  :  https://smartech.gatech.edu/bitstream/1853/34710/1/sargent_carolyn_y_201008_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Stem and progenitor cells are an attractive cell source for the treatment of degenerative diseases due to their potential to differentiate into multiple cell types and provide large cell yields.Thus far, however, clinical applications have been limited due to inefficient differentiation into desired cell types with sufficient yields for adequate tissue repair and regeneration.The ability to spontaneously aggregate in suspension makes embryonic stem cells (ESCs) amenable to large-scale culture techniques for the production of large yields of differentiating cell spheroids (termed embryoid bodies or EBs); however, the introduction of hydrodynamic conditions may alter differentiation profiles within EBs and should be methodically examined.The work presented here employs a novel, laboratory-scale hydrodynamic culture model to systematically interrogate the effects of ESC culture hydrodynamics on cardiomyocyte differentiation through the modulation of a developmentally-relevant signaling pathway.The fluidic environment was defined using computational fluid dynamic modeling, and the effects of hydrodynamic conditions on EB formation, morphology and structure were assessed.Additionally, EB differentiation was examined through gene and protein expression, and indicated that hydrodynamic conditions modulate differentiation patterns, particularly cardiogenic lineage development.This work illustrates that mixing conditions can modulate common signaling pathways active in ESC differentiation and suggests that differentiation may be regulated via bioprocessing parameters and bioreactor design.

【 预 览 】
附件列表
Files Size Format View
Effects of hydrodynamic culture on embryonic stem cell differentiation:cardiogenic modulation 4897KB PDF download
  文献评价指标  
  下载次数:37次 浏览次数:26次