Czechoslovak Mathematical Journal | |
Quasitriangular Hopf group algebras and braided monoidal categories | |
Shiyin Zhao1  Jing Wang2  | |
[1] Department of Teachers Education, Suqian College, 399 South Huanghe Rd., Suqian, Jiangsu, 223800, P. R. China;Hui-Xiang Chen (corresponding author), School of Mathematical Science, Yangzhou University, 180 Siwangting Rd., Yangzhou, Jiangsu, 225002, P. R. China | |
关键词: Hopf $\pi$-algebra; $H$-$\pi$-modules; braided monoidal category; braided monoidal functor; | |
DOI : | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
Let $\pi$ be a group, and $H$ be a semi-Hopf $\pi$-algebra. We first show that the category $_H{\mathcal M}$ of left $\pi$-modules over $H$ is a monoidal category with a suitably defined tensor product and each element $\alpha$ in $\pi$ induces a strict monoidal functor $F_{\alpha}$ from $_H{\mathcal M}$ to itself. Then we introduce the concept of quasitriangular semi-Hopf $\pi$-algebra, and show that a semi-Hopf $\pi$-algebra $H$ is quasitriangular if and only if the category $_H\mathcal M$ is a braided monoidal category and $F_{\alpha}$ is a strict braided monoidal functor for any $\alpha\in\pi$. Finally, we give two examples of Hopf $\pi$-algebras and describe the categories of modules over them.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910183014144ZK.pdf | 180KB | download |