期刊论文详细信息
Czechoslovak Mathematical Journal
Yetter-Drinfeld-Long bimodules are modules
Daowei Lu, Shuanhong Wang1 
关键词: Hopf algebra;    Yetter-Drinfeld-Long bimodule;    braided monoidal category;   
DOI  :  10.21136/CMJ.2017.0666-15
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

  Let $H$ be a finite-dimensional bialgebra. In this paper, we prove that the category $\mathcal{LR}(H)$ of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category $^{H\otimes H^*}_{H\otimes H^*}\mathcal{YD}$ over the tensor product bialgebra $H\otimes H^*$ as monoidal categories. Moreover if $H$ is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910180757823ZK.pdf 104KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:6次