期刊论文详细信息
Czechoslovak Mathematical Journal | |
Yetter-Drinfeld-Long bimodules are modules | |
Daowei Lu, Shuanhong Wang1  | |
关键词: Hopf algebra; Yetter-Drinfeld-Long bimodule; braided monoidal category; | |
DOI : 10.21136/CMJ.2017.0666-15 | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
Let $H$ be a finite-dimensional bialgebra. In this paper, we prove that the category $\mathcal{LR}(H)$ of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category $^{H\otimes H^*}_{H\otimes H^*}\mathcal{YD}$ over the tensor product bialgebra $H\otimes H^*$ as monoidal categories. Moreover if $H$ is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910180757823ZK.pdf | 104KB | download |