Czechoslovak Mathematical Journal | |
Some estimates for commutators of Riesz transform associated with Schrödinger type operators | |
Yu Liu1  Jing Zhang2  Jie-Lai Sheng3  | |
[1] (corresponding author),Jing Zhang,Jie-Lai Sheng,Li-Juan Wang, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian, Beijing, 100083, P. R. China, | |
关键词: commutator; Hardy space; reverse Hö lder inequality; Riesz transform; Schrö dinger operator; Schrö dinger type operator; | |
DOI : | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
Let $\mathcal{L}_1=-\Delta+V$ be a Schrödinger operator and let $\mathcal{L}_2=(-\Delta)^2+V^2$ be a Schrödinger type operator on ${\mathbb{R}^n}$ $(n \geq5)$, where $V \neq0$ is a nonnegative potential belonging to certain reverse Hölder class $B_s$ for $s\ge{n}/2$. The Hardy type space $H^1_{\mathcal{L}_2}$ is defined in terms of the maximal function with respect to the semigroup $\{ e^{-t \mathcal{L}_2}\}$ and it is identical to the Hardy space $H^1_{\mathcal{L}_1}$ established by Dziubański and Zienkiewicz. In this article, we prove the $L^p$-boundedness of the commutator $\mathcal{R}_b=b\mathcal{R}f-\mathcal{R}(bf)$ generated by the Riesz transform $\mathcal{R}=\nabla^2\mathcal{L}_2^{-1/2}$, where $b\in BMO_\theta(\rho)$, which is larger than the space $ BMO(\mathbb{R}^n)$. Moreover, we prove that $\mathcal{R}_b$ is bounded from the Hardy space $H_{\mathcal{L}_2}^1(\mathbb{R}^n)$ into weak $L_ weak^1(\mathbb{R}^n)$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910181618767ZK.pdf | 224KB | download |