期刊论文详细信息
Data Science and Engineering
Estimating the Optimal Number of Clusters k in a Dataset Using Data Depth
  1    1 
[1] grid.444416.7, Department of Computer Science, Karnatak University, 580003, Dharwad, Karnataka, India;
关键词: Data depth;    Depth within cluster;    Depth between cluster;    Depth difference;    Average depth;    k;   
DOI  :  10.1007/s41019-019-0091-y
来源: publisher
PDF
【 摘 要 】

This paper proposes a new method called depth difference (DeD), for estimating the optimal number of clusters (k) in a dataset based on data depth. The DeD method estimates the k parameter before actual clustering is constructed. We define the depth within clusters, depth between clusters, and depth difference to finalize the optimal value of k, which is an input value for the clustering algorithm. The experimental comparison with the leading state-of-the-art alternatives demonstrates that the proposed DeD method outperforms.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910105326807ZK.pdf 1093KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次