BMC Bioinformatics | |
DepthTools: an R package for a robust analysis of gene expression data | |
Aurora Torrente2  Sara López-Pintado3  Juan Romo1  | |
[1] Departamento de Estadística, Universidad Carlos III de Madrid, C/ Madrid, 126, 28903, Getafe, Spain | |
[2] Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, Universidad Carlos III de Madrid, Av Universidad, 30, 28911, Leganés, Spain | |
[3] Departamento de Economía, Métodos Cuantitativos e Historia Económica, Universidad Pablo de Olavide, Carretera de Utrera, Km 1, 41013, Sevilla, Spain | |
关键词: R commander plug-in; R package; Robustness; Data depth; | |
Others : 1087799 DOI : 10.1186/1471-2105-14-237 |
|
received in 2013-04-24, accepted in 2013-07-17, 发布年份 2013 | |
【 摘 要 】
Background
The use of DNA microarrays and oligonucleotide chips of high density in modern biomedical research provides complex, high dimensional data which have been proven to convey crucial information about gene expression levels and to play an important role in disease diagnosis. Therefore, there is a need for developing new, robust statistical techniques to analyze these data.
Results
depthTools is an R package for a robust statistical analysis of gene expression data, based on an efficient implementation of a feasible notion of depth, the Modified Band Depth. This software includes several visualization and inference tools successfully applied to high dimensional gene expression data. A user-friendly interface is also provided via an R-commander plugin.
Conclusion
We illustrate the utility of the depthTools package, that could be used, for instance, to achieve a better understanding of genome-level variation between tumors and to facilitate the development of personalized treatments.
【 授权许可】
2013 Torrente et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150117044139646.pdf | 1298KB | download | |
Figure 6. | 60KB | Image | download |
Figure 5. | 36KB | Image | download |
Figure 4. | 20KB | Image | download |
Figure 3. | 86KB | Image | download |
Figure 2. | 116KB | Image | download |
Figure 1. | 130KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
- [2]Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO: Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000, 24(3):227-235.
- [3]Kote-Jarai Z, Matthews L, Osorio A, Shanley S, Giddings I, Moreews F, Locke I, Evans DG, Eccles D, Williams RD, Girolami M, Campbell C, Eeles R: Accurate prediction of BRCA1 and BRCA2 heterozygous genotype using expression profiling after induced DNA damage. Clin Cancer Res 2006, 12:3896-3901.
- [4]Jing L, Ng MK, Zeng T: On gene selection and classification for cancer microarray data using multi-step clustering and sparse representation. Adv Adaptative Data Anal 2011, 3(1–2):127-148.
- [5]Chuang LY, Yang CH, Li JC, Yang CH: A hybrid BPSO-CGA approach for gene selection and classification of microarray data. J Comput Biol 2012, 19(1):92D10.
- [6]Hillman SC, Mcmullan DJ, Williams D, Maher ER, Kilby MD: Microarray comparative genomic hybridization in prenatal diagnosis: a review. Ultrasound Obstet Gynecol 2012, 40:385-391.
- [7]Takayama K, Kaneshiro K, Tsutsumi S, Horie-Inoue K, Ikeda K, Urano T, Ijichi N, Ouchi Y, Shirahige K, Aburatani H, Inoue S: Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 2007, 26(30):4453-4463.
- [8]Shi T, Mazumdar T, DeVecchio J, Duan ZH, Agyeman A, Aziz M, Houghton J: cDNA Microarray gene expression profiling of hedgehog signaling pathway inhibition in human colon cancer cells. PLoS ONE 2010, 5(10):e13054.
- [9]López-Pintado S, Romo J, Torrente A: Robust depth-based tools for the analysis of gene expression data. Biostatistics 2010, 11(2):254-264.
- [10]Mahalanobis PC: On the generalized distance in statistics. Proc Nat Acad Sci India 1936, 12:49-55.
- [11]Tukey JW: Mathematics and picturing data. In Proceedings of the International Congress of Mathematic: 1974; Vancouver. Edited by Ralph D. James. Vancouver; 1975:2:523-531.
- [12]Liu R: General notions of statistical depth functions. Annal Stat 2000, 28:461-482.
- [13]Zuo Y, Serfling R: General notions of statistical depth functions. Annal Stat 2000, 28:461-482.
- [14]López-Pintado S, Romo J: On the concept of depth for functional data. J Ame Stat Assoc 2009, 104:486-503.
- [15]Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Sellers WR, R G T: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1:203-209.
- [16]Inselberg A: The plane parallel coordinates. Vis Comput 1985, 1:69-91.
- [17]Dudoit S, Fridlyand J, Speed TP: Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002, 97(457):77-87.
- [18]Torrente A: Clustering methods for gene expression data. PhD thesis Universidad Carlos III de Madrid, Department of Statistics; 2007
- [19]Sun Y, Genton M, Nychka D: Exact fast computation of band depth for large functional datasets: How quickly can one million curves be ranked? Stat 2012, 1:68-74.
- [20]Sedgewick R: A new upper bound for Shell sort. J Algorithms 1986, 7:159-173.
- [21]Fox J: The R commander: a basic-statistics graphical user interface to R. J Stat Softw 2005, 14(9):1-42.