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Abstract
This paper proposes a new method called depth difference (DeD), for estimating the optimal number of clusters (k) in a 
dataset based on data depth. The DeD method estimates the k parameter before actual clustering is constructed. We define 
the depth within clusters, depth between clusters, and depth difference to finalize the optimal value of k, which is an input 
value for the clustering algorithm. The experimental comparison with the leading state-of-the-art alternatives demonstrates 
that the proposed DeD method outperforms.

Keywords  Data depth · Depth within cluster · Depth between cluster · Depth difference · Average depth · Optimal value k

1  Introduction

Clustering is an unsupervised machine learning technique 
that partitions the input dataset into clusters in such a way 
that the objects within a cluster are more similar to each 
other than to those in other clusters. Several clustering meth-
ods are available [5], for cluster analysis. However, a core 
problem in applying many of the existing clustering methods 
is that the number of clusters (k parameter) needs to be pre-
specified before the clustering is carried out. The parameter 
k is either identified by users based on prior information or 
determined in a certain way. Clustering results may largely 
depend on the number of clusters specified. It is necessary 
to provide educated guidance for determining the number 
of clusters in order to achieve appropriate clustering results. 
Since the number of clusters is rarely previously known, the 
usual approach is to run the clustering algorithm several 
times with a different k value for each run.

The process of evaluating the partitions produced by clus-
tering algorithms is known as cluster validation, which is an 
important subject in cluster analysis. The common approach 
for this evaluation is to use validity indices. Validity indices 

are typically classified by researchers into two groups, i.e., 
internal or external. The external indices validate a partition 
by comparing it with the external information (true cluster 
labels), whereas the internal indices focus on the partitioned 
data and measure the compactness and separation of the 
clusters.

In the literature, many internal indices have been pro-
posed [1, 9, 13, 15] to analyze the clustering results and 
determine the optimal number of clusters (NC). Most of 
the internal indices are distance based. A recent proposal 
is the gap statistic which compares the change in within-
cluster dispersion with that expected under an appropriate 
null distribution [15]. These indices measure the cluster 
compactness based on average pairwise distance or average 
center-based distance. Similarly, they measure the separation 
between the clusters by calculating the pairwise distance 
between cluster centers. Distance-based indices are sensi-
tive to the inclusion of unrelated variables. Moreover, these 
indices can be dominated by high variance clusters. Further, 
they depend on the scales of individual clusters.

In this paper, a novel method called depth difference 
(DeD) for estimating the optimal number of clusters in a 
dataset based on data depth is proposed. A depth function 
(Mahalanobis depth) arranges data by their degree of cen-
trality. High depth value coincides closely with centrality, 
and low depth value coincides with outlyingness. It focuses 
on centrality and separation of observation rather than 
spread. DeD method partitions the data into k partitions 
(clusters) and calculates the depth of each point within the 
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cluster. The maximum depth value within a cluster repre-
sents the cluster centroid. The method used in this study 
measures the compactness of a cluster by finding the average 
difference between depths of points within the cluster and 
the cluster centroid. It also measures the separation between 
the clusters and the dataset, by calculating the average dif-
ference between the average depth of k partitions and the 
average depth of a dataset. The optimal cluster number is 
determined by maximizing the value of the depth difference.

The traditional methods [1, 9, 13, 15] for finding the k 
value run the clustering algorithm several times with a dif-
ferent k value for each run. Thus, all the partitions are evalu-
ated and the partition that best fits the data is selected. But, 
DeD does not employ any clustering algorithm for partition-
ing the data. Thus, it is computationally efficient and it effec-
tively estimates k value irrespective of dimensions, scales, 
and cluster densities of a dataset. The proposed method is 
also independent of the scales of individual clusters and is 
thus not dominated by high variance clusters. Further, DeD 
is robust to the inclusion of unrelated variables. Theoretical 
research and experimental results indicate good performance 
of the proposed method.

The paper is organized as follows: In Sect. 2, a brief 
description of the existing methods used for estimating the 
number of clusters in a dataset is given. In Sect. 3, the pro-
posed method is presented. The experimental results are 
presented in Sect. 4, and finally, Sect. 5 concludes the paper 
with scopes for future applications.

2 � Background and Related Work

In the literature, several internal validity indices have been 
proposed to evaluate the clustering results and determine 
the optimal NC. Examples include CH index [1], KL index 

[9], Silhouette index [13], and Gap index [15]. Most of the 
works have compared different internal indices by running 
clustering algorithms over different datasets for a range of 
values of k and considering k value for the best partitioning.

In 1985, Milligan and Cooper [12] compared 30 internal 
indices on 108 synthetic datasets with the varying number 
of clusters, dimensions, and cluster sizes. Authors called 
these indices as “stopping criteria” and concluded with top 
performers.

However, in 1999 Gordon [8] categorized these stopping 
rules into global and local rules. He states that global rules 
evaluate the measure, G(q), of the goodness of the partition 
into q clusters, usually based on the within- and between-
cluster variability and identify the value of q for which G(q) 
is optimal. A disadvantage of many of these rules is that there 
is no natural definition of G(1). Hence, they can provide no 
guidance on whether the data should be partitioned. Local 
rules involve examining whether a pair of clusters should 
be amalgamated (or a single cluster should be subdivided). 
Unlike global rules, they are thus based on only part of the 
data and can assess only hierarchically nested partitions. A 
disadvantage of local rules is that they generally need the 
specification of a threshold value or significance level, the 
optimal value of which will depend on the (unknown) proper-
ties of the dataset that is under investigation.

In the following subsections, the four internal indices 
compared in this work are described. The notations used in 
the following subsections are summarized in Table 1.

2.1 � Calinski and Harabasz (CH) Index

Milligan and Cooper [12] have carried out an experimental 
comparative study of 30 different approaches. Among the 
30 different approaches, the approach proposed by Calinski 

Table 1   Details of notations 
used

Notation Description

n Number of observations
p Number of variables
q Number of clusters
X {xij}, i = 1, 2,… , n, j = 1, 2,… , p , n × p data matrix of p vari-

ables measured on n independent observations
X̄ q × p matrix of cluster means
x̄ Centroid of data matrix X
nk Number of objects in cluster Ck

ck Centroid of cluster Ck

xi p-dimensional vector of observations of the ith object in cluster Ck

∥ x ∥ (xTx)1∕2

Wq =
∑q

k=1

∑

i∈Ck
(xi − ck)(xi − ck)

T Within-group dispersion matrix for data clustered into q clusters
Bq =

∑q

k=1
nk(ck − x̄)(ck − x̄)T Between-group dispersion matrix for data clustered into q clusters

T =
∑n

i=1
(xi − x̄)(xi − x̄)T Total dispersion matrix of the data
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and Harabasz [1] outperforms the others. The Calinski and 
Harabasz (CH) index [1] is defined as

The procedure estimates X̄ by maximizing the index CH(q) 
over q. Bq and Wq are the between-cluster and within-cluster 
sum of squared errors, calculated as the trace ( Bq ) and trace 
( Wq ), respectively. CH(q) is only defined for q > 1 since 
trace ( Bq ) is not defined when q = 1.

2.2 � Krzanowski and Lai (KL) Index

Friedman and Rubin [7] proposed minimization of |Wq| as a 
clustering criteria. Concerned with the problem of finding 
X̄ when using this method, Marriott [11] studied property 
of |Wq| in detail and described an approach based on q2|Wq| . 
Krzanowski and Lai [9] examined the behavior of Marriot’s 
q2|Wq| criterion by the Monte Carlo methods. They calcu-
lated the sample value of q2|Wq|∕|T| when sampling from a 
homogeneous, uniform population. The results showed that 
there was a large discrepancy between the estimated value 
and the predicted value. Instead, a similar criterion using 
q2Wq demonstrated much better consistency between the 
estimated value and predicted value. The KL index proposed 
by Krzanowski and Lai [9] is defined as

where

•	 DIFFq = (q − 1)2∕ptrace(Wq−1) − q2∕ptrace(Wq).

The value of q, maximizing KL(q) , is regarded as specify-
ing the optimal number of clusters. But KL(q) is not defined 
for q = 1.

2.3 � Silhouette Index

Kaufman and Rousseeuw [13] introduced the Silhouette 
index which is constructed to show graphically how well 
each object is classified in a given clustering output.

where

•	 S(i) =
b(i)−a(i)

max{a(i);b(i)}
,

•	 a(i) =

∑

j∈{Cr∖i}
dij

nr−1
 is the average dissimilarity of the ith 

object to all other objects of cluster Cr,

(1)CH(q) =
trace(Bq)∕(q − 1)

trace(Wq)∕(n − q)

(2)KL(q) =
|

|

|

|

|

DIFFq

DIFFq+1

|

|

|

|

|

(3)Silhouette =

∑n

i=1
S(i)

n
, Silhouette ∈ [−1, 1],

•	 b(i) = min
s≠r
{diCs

},

•	 diCs
=

∑

j∈Cs
dij

ns
 is the average dissimilarity of the ith object 

to all objects of cluster Cs

The maximum value of the index is used to determine the 
optimal number of clusters in the data. S(i) is not defined for 
k = 1 (only one cluster).

2.4 � Gap Index

Tibshirani et al. [15] proposed an approach to estimate the 
number of clusters in a dataset via gap statistic. This proce-
dure is designed to be fit for any clustering technique. The 
idea is to compare the change in Wqb as qb increases for 
original data with that expected for the data generated from 
a suitable reference null distribution.

where B is the number of reference datasets generated using 
uniform prescription [15] and Wqb is the within-dispersion 
matrix. The optimal number of clusters is chosen via finding 
the smallest q such that:

where

•	 sq = sdq
√

1 + 1∕B,

•	 sdq is the standard deviation of {logWqb} , b = 1,… ,B,

•	 sdq =

�

1

B

∑B

b=1
(logWqb − l̄)2,

•	 l̄ =
1

B

∑B

b=1
logWqb.

To apply this method, it is important to choose an appropri-
ate reference null distribution. Considering k-means cluster-
ing, Tibshirani et al. [15] proved that if p = 1 , the uniform 
distribution is most likely to produce spurious clusters based 
on the gap test among all uni-modal distributions. They also 
proved that in the multivariate case ( p > 1 ), there is no such 
generally applicable reference distribution: It may depend on 
the geometry of the particular null distribution.

3 � Proposed Method

3.1 � Data Depth

Data depth measures a median in a multivariate dataset, 
which is the deepest point in a given dataset. Tukey [16] 
proposed a “half space” depth in order to present an idea 
about multivariate data analysis, based on center outward 
ordering. Various depth methods are found in the literature, 

(4)Gap(q) =
1

B

B
∑

b=1

logWqb − logWq,

Gap(q) ≥ Gap(q + 1) − sq+1, (q = 1,… , n − 2),
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such as convex-hull peeling depth [4], simplicial depth [10], 
regression depth [14], and L1 depth [17]. This study uses 
the Mahalanobis depth function to measure the centrality 
of a point within a cloud of data because of its fast and easy 
computability. Data depth assigns a value between 0 and 1 
to each data point in the dataset which specifies the central-
ity or deepness of that point in the dataset. The point with 
maximum depth will be the deepest point in the dataset, 
which is shown in Fig. 1 using the Mahalanobis depth over 
iris dataset.

The Mahalanobis depth function can be defined as 
follows:

where x̄ and Cov(X) are the mean and covariance matrix 
of X, respectively. Maximum depth point is a center point, 
higher depth value points are near the center, and the lower 
depth value points are outliers. However, data depth presents 
globally maximizing depth. Since the mean is sensitive to 
outliers, the equation to calculate the depth of each point is 
modified as follows:

Here, point Xi is used rather than the mean vector. Thus, 
each point Xi can be regarded as a center point so that it is 
possible to calculate data depth from each point with respect 
to a given dataset.

3.2 � DeD Method

This paper defines a theory for the formulation of the depth 
difference (DeD) method. Let X = {x1, x2 … xn} be a dataset 
with n instances. Data depth assigns a value between 0 and 1 
to each data point in the dataset which specifies the central-
ity or deepness of the point in the dataset. The depth of each 
point xi in X is calculated using Eq. 6 and is denoted by Di , 
for i = 1, 2,… n.

(5)MD(x;X) = [1 + (x − x̄)TCov(X)−1(x − x̄)]−1

(6)MD(x;Xi) = [1 + (x − Xi)
TCov(X)−1(x − Xi)]

−1

Definition 1  Depth median (DM) An instance xi in the 
dataset X is called depth median, if it has maximum depth 
value in X. Depth median is the deepest point in the dataset 
X. The depth median is denoted by DM. Therefore, we define 
depth median as follows:

Definition 2  Depth within cluster (DW) The depth of each 
point within a cluster Ck , for k = 2, 3,… 20 , is denoted 
by Dk

i
 , for i = 1, 2,… nk , where nk is the number of points 

within cluster Ck . The depth median of each cluster Ck is 
represented as DMk . Hence,

The average difference between the depths of points within 
the cluster Ck and the depth median of Ck is denoted by △k , 
which is formulated as follows:

The depth within cluster (DW) is defined as the average of 
△k of k clusters as follows:

Definition 3  Depth between cluster (DB) The average dif-
ference between the depths of points within the dataset X and 
the depth median of X is formulated as follows:

where n is the number of instances in dataset X. The depth 
between cluster is defined as the difference between △ and 
DW, and it is defined as follows:

Definition 4  Depth Difference (DeD): The depth differ-
ence (DeD) finds the difference between depth within clus-
ter (DW) and depth between cluster (DB). DeD is defined 
follows:

Definition 5  Optimal k: The optimal k is the maximum 
index value of DeD. Hence,

(7)DM = max(Di)

(8)DMk = max(Dk
i
)

(9)△k =
1

nk

∑

i∈Ck

|(Dk
i
− DMk)|

(10)DW =
1

k

k
∑

i=1

(△i)

(11)△ =
1

n

n
∑

i=1

|(Di − DM)|

(12)DB = △ − DW

(13)DeD = DW − DB

(14)k = index(max(DeD))

Fig. 1   Mahalanobis depth contours
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Algorithm Description

1.	 Line 3 computes the depth of each point xi in dataset X 
using Mahalanobis depth. The depth values are retained 
in a vector Di (Eq. 6).

2.	 Line 4 finds maximum depth or depth median (DM) of 
the vector Di of the dataset X (Eq. 7).

3.	 Line 5 calculates the average difference between the 
depths of points within the dataset X and the depth 
median of X (Eq. 11).

4.	 Lines 6–14 partition the dataset X into k partitions, for 
k = 2...20 . Each partition (start: end) represents one 
cluster Ck , for k = 2… 20 . For each cluster Ck , it finds 
the depth (Dk

i
) of each point xi within the cluster Ck and 

also finds the depth median (DMk) of each cluster Ck 
(Eq. 8).

5.	 Line 15 computes the average difference between Dk
i
 and 

DMk of the k th cluster which is retained in a vector △k 
(Eq. 9).

6.	 Line 17 calculates the average of △k of k clusters which 
is stored in a vector DW (Eq. 10).

7.	 Line 18 finds the difference between △ and DW which 
is stored in a vector DB (Eq. 12).

8.	 Line 19 finds the difference between DW and DB which 
is assigned to vector DeD (Eq. 13).

9.	 Finally, line 21 finds the index of the maximum value of 
DeD as the optimal value, which is the k value (Eq. 14).

4 � Experimental Results

To verify the performance of the DeD algorithm, this 
study uses NbClust function of NbClust package [2] 
defined in R, to validate indices such as CH index, KL 
index, Silhouette index, and Gap index. The parameters 
used in NbClust function are Euclidean distance, k-means 

algorithm, and the range k = 2 to 20. Experiments are con-
ducted on synthetic datasets, real-world datasets, and one 
image dataset to test the DeD and to compare it with other 
indices, such as the CH index, KL index, Silhouette index, 
and Gap index.

4.1 � Synthetic Datasets

These experiments include 10 2-D synthetic datasets with 
1500 instances. Structure distribution of a 2-D synthetic 
dataset is shown in Fig. 2. Among 10 datasets, for 5 data-
sets 2 unrelated variables were included. The experimental 
results for the five validity indices used to determine the 
optimal number of clusters for the 5 synthetic datasets with 
3 high variance clusters are shown in Table 2.

The correct number of clusters for the 5 synthetic datasets 
is 3, where it is observed that DeD achieves the correct opti-
mal NCs for the 3 synthetic datasets; the Silhouette index 
is effective for 1 dataset; the CH index and KL index are 
effective for 2 datasets, respectively, and the Gap index fails 
to predict the optimal NC, shown in Table 2.

Fig. 2   Dataset with different within-cluster variance

Table 2   Simulation study on synthetic datasets with 3 high variance 
clusters

Dataset CH index KL index Silhouette 
index

GAP index DeD

A1 3 3 5 2 3
A2 3 3 3 2 2
A3 2 10 2 2 3
A4 2 14 2 2 3
A5 2 15 2 2 2
Overall 2/5 2/5 1/5 0/5 3/5



137Estimating the Optimal Number of Clusters k in a Dataset Using Data Depth﻿	

1 3

Table 3 shows that the DeD achieves the correct optimal 
NC for the 3 synthetic datasets, and the four indices fail to 
predict optimal NC.

4.2 � Real‑World Datasets

The experiments include 18 real datasets, 9 datasets drawn 
from the UCI Machine Learning Repository [3], 8 datasets 
from Clustering benchmark datasets [6], and one image data-
set drawn from ORL face database. The 18 real datasets and 
their characteristics are shown in Table 4.

The experimental results from the five validity indices 
used to evaluate the optimal number of clusters are shown 
in Table 5. It is observed that the DeD achieves the correct 
optimal NCs for the 11 real datasets; the Silhouette index 

is effective for 6 datasets; the CH index is effective for 5 
datasets; KL index is effective for 4 datasets, and the Gap 
index is effective for 7 datasets.

4.3 � Relative Error

The experiments for finding the optimal clustering num-
bers for the datasets allows to analyze the changes in the 
relative error in the estimation of k given by each internal 
index experimented with:

where kest is the estimated number of clusters and k is the 
true number of clusters.

The experimental results from the five validity indices 
used to analyze the changes in the relative error in the 
estimation of k are shown in Table 6, where it is found that 
the KL index has a high error rate for FL dataset. In terms 
of average error rate, KL and CH index is very high. But, 
the comprehensive performance of the proposed method 
appears to be outstanding for real-world datasets.

4.4 � Adjusted Rand Index (ARI)

We can check whether the estimated value of k is appro-
priate as the number of clusters or not. We can measure 
this by using the adjusted Rand index (ARI) given by their 
respective clustering:

where

•	 nij = |Si ∩ Sj|,

•	 ai =
∑k

j=1
�Si ∩ Sj�

•	 bi =
∑k

i=1
�Si ∩ Sj�.

In order to compare the clustering results obtained 
using four internal indices and the proposed method 
against the external criteria, the ARI index is used here as 
a performance measure. The ARI validation threshold ( � ), 
� ∈ [−1, 1]. When � < 0 indicates poor matching and when 
� equal to 1 indicates perfect matching. The experimental 
results for ARI index on different datasets are given in 
Table 7. The ARI index values of the proposed method are 
comparatively higher than other indices.

(15)RE =
|k − kest|

k

(16)

ARI =

∑

ij

�

nij
2

�

−

�

∑

i

�

ai
2

�

∑

j

�

bj
2

��

∕

�

n

2

�

1

2

�

∑

i

�

ai
2

�

+
∑

j

�

bj
2

��

−

�

∑

i

�

ai
2

�

∑

j

�

bj
2

��

∕

�

n

2

�

Table 3   Simulation study on synthetic datasets with inclusion of 2 
unrelated variables

Dataset CH index KL index Silhouette 
index

GAP index DeD

B1 2 2 2 2 3
B2 2 2 2 2 2
B3 2 2 2 2 3
B4 2 2 2 2 3
B5 2 2 2 2 2
Overall 0/5 0/5 0/5 0/5 3/5

Table 4   The characteristics of the real datasets

Dataset No. of instances No. of 
attributes

No. of clusters

Face images (FI) 100 90 10
Iris (IR) 150 5 3
Wine (WI) 178 13 3
Seed (SE) 210 8 3
Flame (FL) 240 3 2
Pathbased (PA) 300 3 3
Spiral (SP) 312 3 3
Stampout (ST) 340 10 2
Jain (JA) 373 3 3
R15 (R15) 600 3 15
Breast Cancer (BC) 699 10 2
Pima (PI) 768 9 2
Aggregation (AG) 788 3 7
Pen (PE) 809 17 2
Dim032 (D32) 1024 33 16
Shapes (SH) 5000 3 4
LandArea (LA) 10,546 29 6
Shuttle (SL) 24,917 10 2
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Table 5   Optimal clustering 
numbers for the 18 real datasets

k
est

 number of clusters estimated, k true number of clusters in the dataset, Err. used built in function 
NbClust() from the NbClust package in R, A runtime error “cannot allocate vector of size 4.6 Gb”

Dataset k (known) CH index KL index Silhouette index GAP index DeD
k
est

k
est

k
est

k
est

k
est

FI 10 10 8 12 2 8
IR 3 3 18 2 2 3
WI 3 4 11 2 2 2
SE 3 3 3 2 2 3
FL 2 8 18 4 2 2
PA 3 17 19 3 2 2
SP 3 17 3 20 2 2
ST 2 2 7 2 2 2
JA 2 10 10 2 2 2
R15 15 19 19 16 2 15
BC 2 2 2 2 2 3
PI 2 3 11 2 2 2
AG 7 20 16 4 2 7
PE 2 3 4 3 2 2
D32 16 17 15 15 2 11
SH 4 9 4 4 2 4
LA 6 2 11 2 2 10
SL 2 Err. Err. Err. 2 2
Overall 5/18 (28%) 4/18 (22%) 6/18 (33%) 7/18 (39%) 11/18 (61%)

Table 6   Relative errors of the estimation of the number of clusters in 
relation to the known number of classes

Err. used built in function NbClust() from the NbClust package in R, 
A runtime error “cannot allocate vector of size 4.6 Gb”

Dataset CH index KL index Silhouette index GAP index DeD

FI 0.00 0.20 0.20 0.80 0.20
IR 0.00 5.00 0.33 0.33 0.00
WI 0.33 2.67 0.33 0.33 0.33
SE 0.00 0.00 0.33 0.33 0.00
FL 3.00 8.00 1.00 0.00 0.00
PA 4.67 5.33 0.00 0.33 0.33
SP 4.67 0.00 5.67 0.33 0.33
ST 0.00 2.50 0.00 0.00 0.00
JA 4.00 4.00 0.00 0.00 0.00
R15 0.27 0.27 0.07 0.87 0.00
BC 0.00 0.00 0.00 0.00 0.50
PI 0.50 4.50 0.00 0.00 0.00
AG 1.86 1.29 0.43 0.71 0.00
PE 0.50 1.00 0.50 0.00 0.00
D32 0.06 0.06 0.06 0.88 0.31
SH 1.25 0.00 0.00 0.50 0.00
LA 0.67 0.83 0.67 0.67 0.66
SL Err. Err. Err. 0.00 0.00
Average 1.21 1.98 0.53 0.34 0.15

Table 7   The adjusted Rand index (ARI) for the clustering at each 
estimated k in the datasets

Err. used built in function NbClust() from the NbClust package in R, 
A runtime error “cannot allocate vector of size 4.6 Gb”

Dataset CH index KL index Silhouette index GAP index DeD

FI 0.81 0.78 0.90 0.12 0.78
IR 0.73 0.23 0.54 0.54 0.73
WI 0.13 0.20 0.07 0.07 0.07
SE 0.71 0.71 0.47 0.47 0.72
FL 0.21 0.09 0.43 0.45 0.45
PA 0.22 0.20 0.46 0.40 0.40
SP 0.11 − 0.01 0.11 0.00 0.00
ST 0.10 0.07 0.10 0.10 0.10
JA 0.13 0.13 0.32 0.32 0.32
R15 0.92 0.92 0.88 0.12 0.90
BC 0.84 0.84 0.84 0.84 0.79
PI 0.05 0.04 0.07 0.07 0.07
AG 0.33 0.42 0.76 0.35 0.74
PE 0.06 0.02 0.06 − 0.01 0.34
D32 0.86 0.82 0.82 0.10 0.70
SH 0.65 0.91 0.91 0.49 1.00
LA 0.01 0.07 0.01 0.01 0.06
SL Err. Err. Err. 0.00 0.20
Average 0.38 0.36 0.43 0.27 0.47
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4.5 � Computation Times

Some computation times are given in Table 8. This compu-
tational experiment was carried out in one of the cores of an 
Intel i3 in a 64 bits computer with 8 GB of RAM running 
Windows 8.0 and R. The inbuilt function ‘Sys.time()’ in R 
is used in terms of computation time metric. The experi-
ments on each dataset were executed 10 times to calculate 
the average execution time. The average execution times 
and corresponding datasets are shown in Table 8, where it 
can be observed that the execution time of all the internal 
indices increases with respect to the number of objects to be 
clustered, due to exercising clustering algorithm for finding 
appropriate k value. The average execution time of all inter-
nal indices is comparatively higher than the DeD method.

5 � Conclusion

This paper has presented a method called DeD for estimat-
ing the number of clusters based on data depth. The DeD 
method is uninfluenced by the inclusion of unrelated vari-
ables and is also robust to the dominance of high variance 
clusters. The proposed method is simple and comparatively 
efficient, in terms of k parameter selection. The existing 
methods select the k value of a dataset by running a cluster-
ing algorithm over a dataset, with a set of different values 

for k parameter decided by the user. However, DeD method 
iterates the DeD computations over a dataset with a range of 
values of the k parameter to finalize the appropriate number 
of k clusters, and also DeD effectively treats the dominance 
of high variance clusters. Further, this study shows how the 
distance-based methods are sensitive to the inclusion of 
unrelated variables.

In case of complicated data, it is hard to select the appro-
priate parameter for grouping data. But our experimental 
results demonstrate that DeD is robust to parameter selection 
than the existing methods. In terms of average relative error, 
execution time, and the average ARI, measurements on most 
of the complicated datasets show that the DeD approach 
outperforms existing methods.

DeD requires prior information for the range of k, decided 
by users, and this paper did not provide an adaptive param-
eter scheme based on datasets. It is further considered to 
expand the current algorithm so that it can automatically 
optimize the k parameter without a manual selection process, 
which results in the improvement of efficiency and accuracy.
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