期刊论文详细信息
| Electronic Journal Of Combinatorics | |
| Upper-Bounding the $k$-Colorability Threshold by Counting Covers | |
| Amin Coja-Oghlan1  | |
| 关键词: Random graphs; Graph coloring; Phase transitions; | |
| DOI : | |
| 学科分类:离散数学和组合数学 | |
| 来源: Electronic Journal Of Combinatorics | |
PDF
|
|
【 摘 要 】
Let $G(n,m)$ be the random graph on $n$ vertices with $m$ edges. Let $d=2m/n$ be its average degree. We prove that $G(n,m)$ fails to be $k$-colorable with high probability if $d>2k\ln k-\ln k-1+o_k(1)$. This matches a conjecture put forward on the basi
【 授权许可】
Others
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201909028229407ZK.pdf | 376KB |
PDF