会议论文详细信息
8th STATPHYS-KOLKATA
Some results for k-SAT on trees
Sumedha^1 ; Krishnamurthy, Supriya^2
National Institute of Science Education and Research, Institute of Physics Campus, Odisha, Bhubaneswar
751 005, India^1
Department of Physics, Stockholm University, Stockholm
SE-106 91, Sweden^2
关键词: Cavity method;    Infinite trees;    NP Complete;    Random graphs;    Random k-Sat;    Random K-SAT problem;    Time algorithms;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/638/1/012017/pdf
DOI  :  10.1088/1742-6596/638/1/012017
来源: IOP
PDF
【 摘 要 】

Phase transitions in random k-SAT problems are connected to their computational complexity. While polynomical time algorithms are known to solve the problem for k = 2, for k ≥ 3 the problem is known to be NP-complete. Recently we have studied random k-SAT and many of its variants on regular infinite trees. We find that the solvability threshold for k = 2 matches the exact value of the threshold on regular random graphs. For higher k, the values are very close to those predicted using other techniques like cavity method.

【 预 览 】
附件列表
Files Size Format View
Some results for k-SAT on trees 797KB PDF download
  文献评价指标  
  下载次数:34次 浏览次数:42次