期刊论文详细信息
Cellular Physiology and Biochemistry
Polyamine Depletion Attenuates Isoproterenol-Induced Hypertrophy and Endoplasmic Reticulum Stress in Cardiomyocytes
关键词: Polyamine;    Endoplasmic reticulum stress;    Cardiac hypertrophy;    Apoptosis;   
DOI  :  10.1159/000366350
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background/Aim Polyamines (putrescine, spermidine and spermine) play an essential role in cell growth, differentiation and apoptosis. Hypertrophy is accompanied by an increase in polyamine synthesis and endoplasmic reticulum stress (ERS) in cardiomyocytes. The present study was undertaken to elucidate the molecular interactions between polyamines, ERS and cardiac hypertrophy. Methods Myocardial hypertrophy was simulated by incubating cultured neonatal rat cardiomyocytes in 100 nM isoproterenol (ISO). Polyamine deletion was achieved using 0.5 mM difluoromethylornithine (DFMO). Hypertrophy was estimated using cell surface area measurements, total protein concentrations and atrial natriuretic peptide (ANP) gene expression. Apoptosis was measured using flow cytometry and transmission electron microscopy. Expression of ornithine decarboxylase (ODC) and spermidine/spermine N1-acetyltransferase (SSAT) were analyzed via real-time PCR and Western blotting. Protein expression of ERS and apoptosis factors were analyzed using Western blotting. Results DFMO (0.5 mM and 2 mM) treatments significantly attenuated hypertrophy and apoptosis induced by ISO in cardiomyocytes. DFMO also decreased lactate dehydrogenase (LDH) and malondialdehyde (MDA) level in the culture medium. In addition, DFMO (0.5 mM) down regulated the expression of ODC, glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), cleaved caspase-12, and Bax and up regulated the expression of SSAT and Bcl-2. Finally, these changes were partly reversed by the addition of exogenous putrescine (0.5 mM). Conclusion The data presented here suggest that polyamine depletion could inhibit cardiac hypertrophy and apoptosis, which is closely related to the ERS pathway.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201904038470033ZK.pdf 1860KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:17次