期刊论文详细信息
Boundary value problems
Global exponential stability and existence of periodic solutions for delayed reaction-diffusion BAM neural networks with Dirichlet boundary conditions
Weiyuan Zhang1  Junmin Li2  Minglai Chen3 
[1] Institute of Mathematics and Applied Mathematics, Xianyang Normal University, Xianyang, China;School of Science, Xidian University, Xi’an, China
关键词: neural networks;    reaction-diffusion;    mixed time delays;    global exponential stability;    Poincaré mapping;    Lyapunov functional;   
DOI  :  10.1186/1687-2770-2013-105
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, both global exponential stability and periodic solutions are investigated for a class of delayed reaction-diffusion BAM neural networks with Dirichlet boundary conditions. By employing suitable Lyapunov functionals, sufficient conditions of the global exponential stability and the existence of periodic solutions are established for reaction-diffusion BAM neural networks with mixed time delays and Dirichlet boundary conditions. The derived criteria extend and improve previous results in the literature. A numerical example is given to show the effectiveness of the obtained results.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904022058652ZK.pdf 1179KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:4次