Commentationes mathematicae Universitatis Carolinae | |
Order-theoretic propertiesof some sets of quasi-measures | |
Zbigniew Lipecki | |
关键词: linear lattice; ideal; order bounded; ideal dominated; order unit; Banach lattice; $\\textit{AM}$-space; convex set; extreme point; weakly compact; additive set function; quasi-measure; atomic; extensionDOI: DOI 10.14712/1213-7243.2015.208AMS Subject Classification: 06F20 28A12 28A33 46A55 46B42 PDF; | |
DOI : 10.14712/1213-7243.2015.208 | |
学科分类:物理化学和理论化学 | |
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
【 摘 要 】
Let $\\mathfrak M$ and $\\mathfrak R$ be algebras of subsets of a set $\\Omega $ with $\\mathfrak M\\subset \\mathfrak R$, and denote by $E(\\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\\mu $ on $\\mathfrak M$ to $\\mathfrak R$. We show that $E(\\mu )$ is order bounded if and only if it is contained in a principal ideal in $ba(\\mathfrak R)$ if and only if it is weakly compact and $\\operatorname{extr} E(\\mu )$ is contained in a principal ideal in $ba(\\mathfrak R)$. We also establish some criteria for the coincidence of the ideals, in $ba(\\mathfrak R)$, generated by $E(\\mu )$ and $\\operatorname{extr} E(\\mu )$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201902182556765ZK.pdf | 46KB | download |