期刊论文详细信息
Commentationes mathematicae Universitatis Carolinae
Order boundedness and weak compactnessof the set of quasi-measure extensions of a quasi-measure
Zbigniew Lipecki1 
关键词: linear lattice;    order bounded;    additive set function;    quasi-measure;    atomic;    extension;    convex set;    extreme point;    weakly compact;   
DOI  :  10.14712/1213-7243.2015.130
学科分类:物理化学和理论化学
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics
PDF
【 摘 要 】

Let $\mathfrak M$ and $\mathfrak R$ be algebras of subsets of a set $\Omega $ with $\mathfrak M\subset\mathfrak R$, and denote by $E(\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\mu $ on $\mathfrak M$ to $\mathfrak R$. We give some criteria for order boundedness of $E(\mu )$ in $ba(\mathfrak R)$, in the general case as well as for atomic $\mu $. Order boundedness implies weak compactness of $E (\mu )$. We show that the converse implication holds under some assumptions on $\mathfrak M$, $\mathfrak R$ and $\mu $ or $\mu $ alone, but not in general.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904036560559ZK.pdf 46KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:15次