期刊论文详细信息
Commentationes mathematicae Universitatis Carolinae | |
Order boundedness and weak compactnessof the set of quasi-measure extensions of a quasi-measure | |
Zbigniew Lipecki1  | |
关键词: linear lattice; order bounded; additive set function; quasi-measure; atomic; extension; convex set; extreme point; weakly compact; | |
DOI : 10.14712/1213-7243.2015.130 | |
学科分类:物理化学和理论化学 | |
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
【 摘 要 】
Let $\mathfrak M$ and $\mathfrak R$ be algebras of subsets of a set $\Omega $ with $\mathfrak M\subset\mathfrak R$, and denote by $E(\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\mu $ on $\mathfrak M$ to $\mathfrak R$. We give some criteria for order boundedness of $E(\mu )$ in $ba(\mathfrak R)$, in the general case as well as for atomic $\mu $. Order boundedness implies weak compactness of $E (\mu )$. We show that the converse implication holds under some assumptions on $\mathfrak M$, $\mathfrak R$ and $\mu $ or $\mu $ alone, but not in general.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904036560559ZK.pdf | 46KB | download |