期刊论文详细信息
Canadian mathematical bulletin | |
Some Remarks on the Algebraic Sum of Ideals and Riesz Subspaces | |
Witold Wnuk1  | |
[1] Faculty of Mathematics and Computer Science, A. Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland | |
关键词: locally solid Riesz space; Riesz subspace; ideal; minimal topological vector space; Lebesgue property; | |
DOI : 10.4153/CMB-2011-151-0 | |
学科分类:数学(综合) | |
来源: University of Toronto Press * Journals Division | |
【 摘 要 】
Following ideas used by Drewnowski and Wilansky we prove that if $I$is an infinite dimensional and infinite codimensional closed ideal in a complete metrizable locallysolid Riesz space and $I$ does not contain any order copy of $mathbb R^{mathbb N}$ then there exists aclosed, separable, discrete Riesz subspace $G$ such that the topology induced on $G$ is Lebesgue, $I cap G ={0}$, and $I + G$ is not closed.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912050576957ZK.pdf | 36KB | download |