期刊论文详细信息
PLoS Pathogens
Direct Visualization of Peptide/MHC Complexes at the Surface and in the Intracellular Compartments of Cells Infected In Vivo by Leishmania major
Nicolas Glaichenhaus1  Johan Hoebeke2  Eric Muraille2  Ana Davalos-Misslitz3  Evelyne Mougneau4  Toni Aebischer5  Julie Cazareth6  Pierre Gounon6  Christoph Lippuner6  Sylviane Muller7 
[1] Department of Nephrology, Hannover Medical School, Hannover, Germany;Institut de Pharmacologie Moléculaire et Cellulaire, INSERM U924, Valbonne, France;Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Valbonne, France;Parasitology laboratory, Robert Koch Institute, Berlin, Germany;UPR 9021 CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France;Université de Nice Sophia-Antipolis, Nice, France;Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
关键词: Phagosomes;    Cell membranes;    Eosinophils;    Parasitic diseases;    Flow cytometry;    Major histocompatibility complex;    Vesicles;    Membrane staining;   
DOI  :  10.1371/journal.ppat.1001154
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

Protozoa and bacteria infect various types of phagocytic cells including macrophages, monocytes, dendritic cells and eosinophils. However, it is not clear which of these cells process and present microbial antigens in vivo and in which cellular compartments parasite peptides are loaded onto Major Histocompatibility Complex molecules. To address these issues, we have infected susceptible BALB/c (H-2d) mice with a recombinant Leishmania major parasite expressing a fluorescent tracer. To directly visualize the antigen presenting cells that present parasite-derived peptides to CD4+ T cells, we have generated a monoclonal antibody that reacts to an antigenic peptide derived from the parasite LACK antigen bound to I-Ad Major Histocompatibility Complex class II molecule. Immunogold electron microscopic analysis of in vivo infected cells showed that intracellular I-Ad/LACK complexes were present in the membrane of amastigote-containing phagosomes in dendritic cells, eosinophils and macrophages/monocytes. In both dendritic cells and macrophages, these complexes were also present in smaller vesicles that did not contain amastigote. The presence of I-Ad/LACK complexes at the surface of dendritic cells, but neither on the plasma membrane of macrophages nor eosinophils was independently confirmed by flow cytometry and by incubating sorted phagocytes with highly sensitive LACK-specific hybridomas. Altogether, our results suggest that peptides derived from Leishmania proteins are loaded onto Major Histocompatibility Complex class II molecules in the phagosomes of infected phagocytes. Although these complexes are transported to the cell surface in dendritic cells, therefore allowing the stimulation of parasite-specific CD4+ T cells, this does not occur in other phagocytic cells. To our knowledge, this is the first study in which Major Histocompatibility Complex class II molecules bound to peptides derived from a parasite protein have been visualized within and at the surface of cells that were infected in vivo.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902011115575ZK.pdf 13432KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:15次