We describe finite element modeling of the deformation of living cells by atomic force microscopy (AFM). Cells are soft systems, susceptible to large deformations in the course of an AFM measurement. Often the local properties, the subject of the measurement, are obscured by the response of the cell as a whole. The Lagrangian finite deformation model we have developed and implemented infinite elements analysis offers a solution to this problem. The effect of the gross deformation of the cell can be subtracted from the experimentally measured data in order to give a reproducible value for local properties. This facilitates concurrent experimental efforts to measure the mechanical properties at specific receptor sites on the membrane of a living cell.