期刊论文详细信息
Commentationes mathematicae Universitatis Carolinae | |
Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale | |
Christopher S. Goodrich1  | |
关键词: time scales; integral boundary condition; second-order boundary value problem; cone; positive solution; | |
DOI : | |
学科分类:物理化学和理论化学 | |
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
【 摘 要 】
We consider the existence of at least one positive solution to the dynamic boundary value problem \begin{align*} -y^{\Delta\Delta}(t) & = \lambda f(t,y(t))\text{, }t\in [0,T]_{\mathbb{T}}y(0) & = \int_{\tau_1}^{\tau_2}F_1(s,y(s))\ \Delta sy\left(\sigma^2(T)\right) & = \int_{\tau_3}^{\tau_4}F_2(s,y(s))\ \Delta s, \end{align*} where $\mathbb{T}$ is an arbitrary time scale with $0.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201901232891079ZK.pdf | 60KB | download |