| Particle and Fibre Toxicology | |
| Participation of heparin binding proteins from the surface of Leishmania (Viannia) braziliensis promastigotes in the adhesion of parasites to Lutzomyia longipalpis cells (Lulo) in vitro | |
| Carlos Roberto Alves6  Felio J Bello4  Maria de Fátima Madeira5  Helena Bonciani Nader2  Carolina Meloni Vicente2  Leny Toma2  Reginaldo Peçanha Brazil1  Renata Oliveira de Araújo Soares6  Francisco Odêncio de Oliveira Junior3  Bernardo Acácio Santini Pereira6  Franklin Souza da Silva6  Mirian Claudia de Souza Pereira3  Luzia Monteiro de Castro Côrtes6  | |
| [1] Laboratório de Bioquímica e Fisiologia de Insetos - IOC - Fiocruz, Av. Brasil 4365, Rio de Janeiro - CEP, 21040-360, Brazil;Departamento de Bioquímica Universidade Federal de São Paulo, UNIFESP, SP, Brazil;Laboratório de Ultraestrutura Celular, Av. Brasil 4365, Rio de Janeiro - CEP, 21040-360, Brazil;Universidad Del Rosario, Escuela de Medicina, Carrera 24 no 63 C-69, Bogotá, D.C, Colombia;Laboratório de Vigilância em Leishmanioses - IPEC - Fiocruz, Av. Brasil 4365, Rio de Janeiro - CEP, 21040-360, Brazil;Laboratório de Biologia Molecular e Doenças Endêmicas, Av. Brasil 4365, Rio de Janeiro - CEP, 21040-360, Brazil | |
| 关键词: Surface plasmon resonance; Glycosaminoglycans; Lulo cells; Promastigotes; L. (V.) braziliensis; | |
| Others : 1231755 DOI : 10.1186/1756-3305-5-142 |
|
| received in 2012-02-23, accepted in 2012-07-02, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Leishmania (V.) braziliensis is a causative agent of cutaneous leishmaniasis in Brazil. During the parasite life cycle, the promastigotes adhere to the gut of sandflies, to avoid being eliminated with the dejection. The Lulo cell line, derived from Lutzomyia longipalpis (Diptera: Psychodidae), is a suitable in vitro study model to understand the features of parasite adhesion. Here, we analyze the role of glycosaminoglycans (GAGs) from Lulo cells and proteins from the parasites in this event.
Methods
Flagellar (Ff) and membrane (Mf) fractions from promastigotes were obtained by differential centrifugation and the purity of fractions confirmed by western blot assays, using specific antibodies for cellular compartments. Heparin-binding proteins (HBP) were isolated from both fractions using a HiTrap-Heparin column. In addition, binding of promastigotes to Lulo cells or to a heparin-coated surface was assessed by inhibition assays or surface plasmon resonance (SPR) analysis.
Results
The success of promastigotes subcellular fractionation led to the obtainment of Ff and Mf proteins, both of which presented two main protein bands (65.0 and 55.0kDa) with affinity to heparin. The contribution of HBPs in the adherence of promastigotes to Lulo cells was assessed through competition assays, using HS or the purified HBPs fractions. All tested samples presented a measurable inhibition rate when compared to control adhesion rate (17 ± 2.0% of culture cells with adhered parasites): 30% (for HS 20μg/ml) and 16% (for HS 10μg/ml); HBP Mf (35.2% for 10μg/ml and 25.4% for 20μg/ml) and HBP Ff (10.0% for 10μg/ml and 31.4% for 20μg/ml). Additionally, to verify the presence of sulfated GAGs in Lulo cells surface and intracellular compartment, metabolic labeling with radioactive sulfate was performed, indicating the presence of an HS and chondroitin sulfate in both cell sections. The SPR analysis performed further confirmed the presence of GAGs ligands on L. (V.) braziliensis promastigote surfaces.
Conclusions
The data presented here point to evidences that HBPs present on the surface of L. (V.) braziliensis promastigotes participate in adhesion of these parasites to Lulo cells through HS participation.
【 授权许可】
2012 de Castro Côrtes et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| hess-16-4707-2012.pdf | 1626KB | ||
| Figure 4. | 62KB | Image | |
| Figure 3. | 34KB | Image | |
| Figure 2. | 48KB | Image | |
| Figure 1. | 27KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S: Cutaneous leishmaniasis. Lancet Infect Dis 2007, 7:581-596.
- [2]Rangel EF, Lainson R: Ecologia das leishmanioses. Transmissores de leishmaniose tegumentar Americana. In Flebotomíneos do Brasil. Edited by Rangel EF, Lainson R. Fiocruz, Rio de Janeiro, Brazil; 2003:291-309.
- [3]Kaye P, Scott P: Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 2011, 9:604-615.
- [4]Bates PA, Rogers ME: New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Medicine 2004, 4:601-609.
- [5]Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL: A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology 1997, 115:359-369.
- [6]Walters LL, Irons KP, Modi GB, Tesh RB: Refractory barriers in the sand fly Phlebotomus papatasi (Diptera: Psychodidae) to infection with Leishmania panamensis. Am J Trop Med Hyg 1992, 46:211-228.
- [7]Bates PA: Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol 2008, 11:340-344.
- [8]Hajmová M, Chang KP, Kolli B, Volf P: Down-regulation of gp63 in Leishmania amazonensis reduces its early development in Lutzomyia longipalpis. Microbes Infect 2004, 6:646-649.
- [9]Soares RP, Margonari C, Secundino NC, Macêdo ME, da Costa SM, Rangel EF, Pimenta PF, Turco SJ: Differential midgut attachment of Leishmania (Viannia) braziliensis in the sand flies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia. J Biomed Biotechnol 2010, 2010:439174.
- [10]Kamhawi S, Modi GB, Pimenta PF, Rowton E, Sacks DL: The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitology 2000, 121(Pt 1):25-33.
- [11]Pimenta PF, Saraiva EM, Rowton E, Modi GB, Garraway LA, Beverley SM, Turco SJ, Sacks DL: Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci USA 1994, 91:9155-9159.
- [12]Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, Sacks DL: Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science 1992, 256:1812-1815.
- [13]Rogers ME, Ilg T, Nikolaev AV, Ferguson MA, Bates PA: Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 2004, 430:463-467.
- [14]Côrtes LM, Silva RM, Pereira BA, Guerra C, Zapata AC, Bello FJ, Finkelstein LC, Madeira MF, Brazil RP, Corte-Real S, Alves CR: Lulo cell line derived from Lutzomyia longipalpis (Diptera: Psychodidae): a novel model to assay Leishmania spp. and vector interaction. Parasit Vectors 2011, 4:216. BioMed Central Full Text
- [15]Naderer T, Vince JE, McConville MJ: Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host. Curr Mol Med 2004, 4:649-665.
- [16]Garcia ES, Azambuja P, Nader HB, Dietrich CP: Biosynthesis of sulfated glycosaminoglycans in the hemipteran Rhodnius prolixus. Insect Biochemistry 1986, 16:347-352.
- [17]Toledo OMS, Dietrich CP: Tissue specific distribution of sulfated mucopolysaccharides in mammals. Biochim Biophy Acta 1977, 498:114-122.
- [18]Jeffrey D, Esko Robert J, Linhardt , et al.: Proteins that bind sulfated glycosaminoglycans. In Essentials of glycobiology. 2nd edition. Edited by Varki A, Cummings RD, Esko JD. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY); 2009.
- [19]Alves CR, Silva FS, Oliveira-Junior FO, Pereira BAS, Pires FA, Pereira MCS: Affinity-based methods for the separation of parasite proteins. In Affinity Chromatography. In Tech (in press), ; 2012.
- [20]Love DC, Esko JD, Mosser DM: A heparin-binding activity on Leishmania amastigotes which mediates adhesion to cellular proteoglycans. J Cell Biol 1993, 123:759-766.
- [21]Volf P, Svobodova M, Dvorakova E: Blood meal digestion and Leishmania major infections in Phlebotomus duboscqi: effect of carbohydrates inhibiting midgut lectin activity. Med Vet Entomol 2001, 15:281-286.
- [22]Mukhopadhyay NK, Shome K, Saha AK, Hassell JR, Glew RH: Heparin binds to Leishmania donovani promastigotes and inhibits protein phosphorylation. Biochem J 1989, 264:517-525.
- [23]Butcher BA, Shome K, Estes LW, Choay J, Petitou M, Sie P, Glew RH: Leishmania donovani: cell-surface heparin receptors of promastigotes are recruited from an internal pool after trypsinization. Exp Parasitol 1990, 71:49-59.
- [24]Butcher BA, Sklar LA, Seamer LC, Glew RH: Heparin enhances the interaction of infective Leishmania donovani promastigotes with mouse peritoneal macrophages. A fluorescence flow cytometric analysis. J Immunol 1992, 148:2879-2886.
- [25]Kock NP, Gabius HJ, Schmitz J, Schotteliu J: Receptors for carbohydrate ligands including heparin on the cell surface of Leishmania and other trypanosomatids. Trop Med Int Health 1997, 2:863-874.
- [26]Azevedo-Pereira RL, Pereira MCS, Oliveira FOR, Brazil RP, Côrtes LMC, Madeira MF, Santos ALS, Toma L, Alves CR: Heparin binding proteins from Leishmania (Viannia) braziliensis promastigotes. Vet Parasitol 2007, 145:234-239.
- [27]De Castro Côrtes LM, de Souza Pereira MC, de Oliveira FO, Corte-Real S, da Silva FS, Pereira BA, de Fátima Madeira M, de Moraes MT, Brazil RP, Alves CR: Leishmania (Viannia) braziliensis: insights on subcellular distribution and biochemical properties of heparin-binding proteins. Parasitology 2012, 7:1-8.
- [28]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
- [29]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
- [30]Gonçalves AM, Nehme NS, Morel CM: An improved silver staining procedure for schizodeme analysis in polyacrylamide gradient gels. Mem Inst Oswaldo Cruz 1990, 85:101-106.
- [31]Dietrich CP, Dietrich SM: Electrophoretic behavior of acidic mucopolysaccharides in diamine buffers. Anal Biochem 1976, 70:645-647.
- [32]Romi R: Arthropod-borne diseases in Italy: from a neglected matter to an emerging health problem. Ann Ist Super Sanita 2010, 46:436-443.
- [33]Williams CR, Bader CA, Kearney MR, Ritchie SA, Russel RC: The extinction of dengue through natural vulnerability of its vectors. PLoS Negl Trop Dis 2010, 4:e922.
- [34]Handman E: Cell biology of Leishmania. Adv Parasitol 1999, 44:1-39.
- [35]Wilson R, Bates MD, Dostalova A, Jecna L, Dillon RJ, Volf P, Bates PA: Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay. PLoS Negl Trop Dis 2010, 4(pii):e816.
- [36]Rey G, Ferro C, Bello F: Establishment and characterization of a new continuous cell line from Lutzomyia longipalpis (Diptera: Psychodidae) and its susceptibility to infections with arboviruses and Leishmania chagasi. Mem Inst Oswaldo Cruz 2000, 95:103-110.
- [37]Bello FJ, Mejía AJ, Corena MP, Ayala M, Sarmiento L, Zúñiga C, Palau MT: Experimental infection of Leishmania (L.) chagasi in a cell line derived from Lutzomyia longipalpis (Diptera: Psychodidae). Mem Inst Oswaldo Cruz 2005, 100:619-625.
- [38]Wadström T, Ljungh A: Glycosaminoglycan-binding microbial proteins in tissue adhesion and invasion: key events in microbial pathogenicity. J Med Microbiol 1999, 48:223-233.
- [39]Coppi A, Tewari R, Bishop JR, Bennett BL, Lawrence R, Esko JD, Billker O, Sinnis P: Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host & Microbe 2007, 2:316-327.
- [40]Pradel G, Garapaty S, Frevert U: Proteoglycans mediate malaria sporozoite targeting to the liver. Mol Microbiol 2002, 45:637-651.
- [41]Nunes MC, Scherf A: Plasmodium falciparum during pregnancy: a puzzling parasite tissue adhesion tropism. Parasitology 2007, 134:1863-1869.
- [42]Dinglasan RR, Alaganan A, Ghosh AK, Saito A, van Kuppevelt TH, Jacobs-Lorena M: Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion. Proc Natl Acad Sci U S A 2007, 104:15882-15887.
- [43]Gonzalez MS, Hamedi A, Albuquerque-Cunha JM, Nogueira NF, De Souza W, Ratcliffe NA, Azambuja P, Garcia ES, Mello CB: Antiserum against perimicrovillar membranes and midgut tissue reduces the development of Trypanosoma cruzi in the insect vector, Rhodnius prolixus. Exp Parasitol 2006, 114:297-304.
- [44]Oliveira-Jr FOR, Alves CR, Souza-Silva F, Calvet CM, Côrtes LMC, Gonzalez MS, Toma L, Bouças RI, Nader HB, Pereira MCS: Trypanosoma cruzi heparin-binding proteins mediate the adherence of epimastigotes to the midgut epithelial cells of Rhodnius prolixus. Parasitology 2012, 139:735-743.
- [45]Dietrich CP, Montes de Oca H: Surface sulfated mucopolysaccharides of primary and permanent mammalian cell lines. Biochem Biophys Res Commun 1978, 80:805-812.
- [46]Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M: Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 1999, 68:729-777.
- [47]Terao-Muto Y, Yoneda M, Seki T, Watanabe A, Tsukiyama-Kohara K, Fujita K, Kai C: Heparin-like glycosaminoglycans prevent the infection of measles virus in SLAM negative cell lines. Antiviral Res 2008, 80:370-376.
- [48]Rathore D, McCutchan TF, Garboczi DN, Toida T, Hernáiz MJ, LeBrun LA, Lang CS, Linhardt RJ: Direct measurement of the interactions of glycosaminoglycans and a heparin decasaccharide with the malaria circumsporozoite protein. Biochemistry 2001, 40:11518-11524.
- [49]Ramalho-Ortigão M, Jochim RC, Anderson JM, Lawyer PG, Pham VM, Kamhawi S, Valenzuela JG: Exploring the midgut transcriptome of Phlebotomus papatasi: comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania-major-infected sandflies. BMC Genomics 2007, 8:300. BioMed Central Full Text
PDF