期刊论文详细信息
Respiratory Research
Combined exposure to cigarette smoke and nontypeable Haemophilus influenzae drives development of a COPD phenotype in mice
Uma S Sajjan3  James M Beck2  Peter Mancuso1  Brenton Kinker3  Adam T Comstock3  Shyamala Ganesan3 
[1] School of Public Health, University of Michigan, Ann Arbor, MI, USA;Veterans Affairs, Eastern Colorado Health Care System, Denver, CO, USA;Department of Pediatrics and Communicable Diseases, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5688, USA
关键词: Emphysema;    COPD pathology;    Airway epithelium;    Viral infection;    COPD exacerbation;   
Others  :  790696
DOI  :  10.1186/1465-9921-15-11
 received in 2013-12-02, accepted in 2014-02-03,  发布年份 2014
PDF
【 摘 要 】

Background

Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD). CS-exposed mice develop emphysema and mild pulmonary inflammation but no airway obstruction, which is also a prominent feature of COPD. Therefore, CS may interact with other factors, particularly respiratory infections, in the pathogenesis of airway remodeling in COPD.

Methods

C57BL/6 mice were exposed to CS for 2 h a day, 5 days a week for 8 weeks. Mice were also exposed to heat-killed non-typeable H. influenzae (HK-NTHi) on days 7 and 21. One day after the last exposure to CS, mice were sacrificed and lung inflammation and mechanics, emphysematous changes, and goblet cell metaplasia were assessed. Mice exposed to CS or HK-NTHi alone or room air served as controls. To determine the susceptibility to viral infections, we also challenged these mice with rhinovirus (RV).

Results

Unlike mice exposed to CS or HK-NTHi alone, animals exposed to CS/HK-NTHi developed emphysema, lung inflammation and goblet cell metaplasia in both large and small airways. CS/HK-NTHi-exposed mice also expressed increased levels of mucin genes and cytokines compared to mice in other groups. CS/HK-NTHi-exposed mice infected with RV demonstrated increased viral persistence, sustained neutrophilia, and further increments in mucin gene and chemokine expression compared to other groups.

Conclusions

These findings indicate that in addition to CS, bacteria may also contribute to development of COPD, particularly changes in airways. Mice exposed to CS/HK-NTHi are also more susceptible to subsequent viral infection than mice exposed to either CS or HK-NTHi alone.

【 授权许可】

   
2014 Ganesan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705002706263.pdf 1868KB PDF download
Figure 8. 66KB Image download
Figure 7. 89KB Image download
Figure 6. 102KB Image download
Figure 5. 56KB Image download
Figure 4. 87KB Image download
Figure 3. 76KB Image download
Figure 2. 208KB Image download
Figure 1. 197KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Kochanek KD, Xu J, Murphy SL, Minono AM, Kung H: Deaths:Preliminary Data for 2009. National Vitral Statistics Reports 2011, 59:1-51.
  • [2]Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD: The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004, 350:2645-2653.
  • [3]Mannino DM, Buist AS: Global burden of COPD: risk factors, prevalence, and future trends. Lancet 2007, 370:765-773.
  • [4]Gaschler GJ, Skrtic M, Zavitz CC, Lindahl M, Onnervik PO, Murphy TF, Sethi S, Stampfli MR: Bacteria challenge in smoke-exposed mice exacerbates inflammation and skews the inflammatory profile. Am J Respir Crit Care Med 2009, 179:666-675.
  • [5]Doz E, Noulin N, Boichot E, Guenon I, Fick L, Le Bert M, Lagente V, Ryffel B, Schnyder B, Quesniaux VF, Couillin I: Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol 2008, 180:1169-1178.
  • [6]Churg A, Wang RD, Tai H, Wang X, Xie C, Dai J, Shapiro SD, Wright JL: Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-alpha release. Am J Respir Crit Care Med 2003, 167:1083-1089.
  • [7]Onnervik PO, Lindahl M, Svitacheva N, Stampfli M, Thim K, Smailagic A, Virtala R, Taylor JD: The role of the CCR1 receptor in the inflammatory response to tobacco smoke in a mouse model. Inflamm Res 2010, 59:817-825.
  • [8]Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL: Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 2004, 170:492-498.
  • [9]Rinaldi M, Maes K, De Vleeschauwer S, Thomas D, Verbeken EK, Decramer M, Janssens W, Gayan-Ramirez GN: Long-term nose-only cigarette smoke exposure induces emphysema and mild skeletal muscle dysfunction in mice. Dis Model Mech 2012, 5:333-341.
  • [10]Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Ronty M, et al.: SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest 2012, 122:2032-2045.
  • [11]D’Hulst AI, Vermaelen KY, Brusselle GG, Joos GF, Pauwels RA: Time course of cigarette smoke-induced pulmonary inflammation in mice. Eur Respir J 2005, 26:204-213.
  • [12]Makita H, Nasuhara Y, Nagai K, Ito Y, Hasegawa M, Betsuyaku T, Onodera Y, Hizawa N, Nishimura M: Characterisation of phenotypes based on severity of emphysema in chronic obstructive pulmonary disease. Thorax 2007, 62:932-937.
  • [13]Lokke A, Lange P, Scharling H, Fabricius P, Vestbo J: Developing COPD: a 25 year follow up study of the general population. Thorax 2006, 61:935-939.
  • [14]Ohar JA, Sadeghnejad A, Meyers DA, Donohue JF, Bleecker ER: Do symptoms predict COPD in smokers? Chest 2010, 137:1345-1353.
  • [15]Sethi S, Murphy TF: Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 2008, 359:2355-2365.
  • [16]Huvenne W, Lanckacker EA, Krysko O, Bracke KR, Demoor T, Hellings PW, Brusselle GG, Joos GF, Bachert C, Maes T: Exacerbation of cigarette smoke-induced pulmonary inflammation by Staphylococcus aureus enterotoxin B in mice. Respir Res 2011, 12:69.
  • [17]Kang MJ, Lee CG, Lee JY, Dela Cruz CS, Chen ZJ, Enelow R, Elias JA: Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J Clin Invest 2008, 118:2771-2784.
  • [18]Moghaddam SJ, Clement CG, De la Garza MM, Zou X, Travis EL, Young HW, Evans CM, Tuvim MJ, Dickey BF: Haemophilus influenzae lysate induces aspects of the chronic obstructive pulmonary disease phenotype. Am J Respir Cell Mol Biol 2008, 38:629-638.
  • [19]Szponar B, Pehrson C, Larsson L: Bacterial and fungal markers in tobacco smoke. Sci Total Environ 2012, 438:447-451.
  • [20]Larsson L, Pehrson C, Dechen T, Crane-Godreau M: Microbiological components in mainstream and sidestream cigarette smoke. Tob Induc Dis 2012, 10:13. BioMed Central Full Text
  • [21]Vernooy JH, Dentener MA, van Suylen RJ, Buurman WA, Wouters EF: Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol 2002, 26:152-159.
  • [22]Sajjan U, Ganesan S, Comstock AT, Shim J, Wang Q, Nagarkar DR, Zhao Y, Goldsmith AM, Sonstein J, Linn MJ, et al.: Elastase- and LPS-exposed mice display altered responses to rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2009, 297:L931-L944.
  • [23]Sethi S, Sethi R, Eschberger K, Lobbins P, Cai X, Grant BJ, Murphy TF: Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007, 176:356-361.
  • [24]Wilkinson TM, Hurst JR, Perera WR, Wilks M, Donaldson GC, Wedzicha JA: Effect of interactions between lower airway bacterial and rhinoviral infection in exacerbations of COPD. Chest 2006, 129:317-324.
  • [25]Rohde G, Wiethege A, Borg I, Kauth M, Bauer TT, Gillissen A, Bufe A, Schultze-Werninghaus G: Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case–control study. Thorax 2003, 58:37-42.
  • [26]Ganesan S, Unger BL, Comstock AT, Angel KA, Mancuso P, Martinez FJ, Sajjan US: Aberrantly activated EGFR contributes to enhanced IL-8 expression in COPD airways epithelial cells via regulation of nuclear FoxO3A. Thorax 2013, 68:131-141.
  • [27]Unger BL, Faris AN, Ganesan S, Comstock AT, Hershenson MB, Sajjan US: Rhinovirus attenuates Non-typeable Hemophilus influenzae-stimulated IL-8 responses via TLR2-dependent degradation of IRAK-1. PLoS Pathog 2012, 8:e1002969.
  • [28]Ganesan S, Faris AN, Comstock AT, Sonstein J, Curtis JL, Sajjan US: Elastase/LPS-Exposed Mice Exhibit Impaired Innate Immune Responses to Bacterial Challenge Role of Scavenger Receptor A. Am J Pathol 2012, 180:61-72.
  • [29]Chattoraj SS, Ganesan S, Jones AM, Helm JM, Comstock AT, Bright-Thomas R, LiPuma JJ, Hershenson MB, Sajjan US: Rhinovirus infection liberates planktonic bacteria from biofilm and increases chemokine responses in cystic fibrosis airway epithelial cells. Thorax 2011, 66:333-339.
  • [30]Wang Q, Miller DJ, Bowman ER, Nagarkar DR, Schneider D, Zhao Y, Linn MJ, Goldsmith AM, Bentley JK, Sajjan US, Hershenson MB: MDA5 and TLR3 Initiate Pro-Inflammatory Signaling Pathways Leading to Rhinovirus-Induced Airways Inflammation and Hyperresponsiveness. PLoS Pathog 2011, 7:e1002070.
  • [31]Ray P, Tang W, Wang P, Homer R, Kuhn C 3rd, Flavell RA, Elias JA: Regulated overexpression of interleukin 11 in the lung. Use to dissociate development-dependent and -independent phenotypes. J Clin Invest 1997, 100:2501-2511.
  • [32]Leverkoehne I, Gruber AD: The murine mCLCA3 (alias gob-5) protein is located in the mucin granule membranes of intestinal, respiratory, and uterine goblet cells. J Histochem Cytochem 2002, 50:829-838.
  • [33]Wedzicha JA, Seemungal TA: COPD exacerbations: defining their cause and prevention. Lancet 2007, 370:786-796.
  • [34]Newcomb DC, Sajjan US, Nagarkar DR, Wang Q, Nanua S, Zhou Y, McHenry CL, Hennrick KT, Tsai WC, Bentley JK, et al.: Human rhinovirus 1B exposure induces phosphatidylinositol 3-kinase-dependent airway inflammation in mice. Am J Respir Crit Care Med 2008, 177:1111-1121.
  • [35]Mallia P, Message SD, Gielen V, Contoli M, Gray K, Kebadze T, Aniscenko J, Laza-Stanca V, Edwards MR, Slater L, et al.: Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med 2011, 183:734-742.
  • [36]Sethi S, Maloney J, Grove L, Wrona C, Berenson CS: Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006, 173:991-998.
  • [37]Chen R, Lim JH, Jono H, Gu XX, Kim YS, Basbaum CB, Murphy TF, Li JD: Nontypeable Haemophilus influenzae lipoprotein P6 induces MUC5AC mucin transcription via TLR2-TAK1-dependent p38 MAPK-AP1 and IKKbeta-IkappaBalpha-NF-kappaB signaling pathways. Biochem Biophys Res Commun 2004, 324:1087-1094.
  • [38]Rock JR, Randell SH, Hogan BL: Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 2010, 3:545-556.
  • [39]Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN: Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2007, 37:748-755.
  • [40]Hodge S, Matthews G, Mukaro V, Ahern J, Shivam A, Hodge G, Holmes M, Jersmann H, Reynolds PN: Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am J Respir Cell Mol Biol 2011, 44:673-681.
  • [41]Benoit M, Desnues B, Mege JL: Macrophage polarization in bacterial infections. J Immunol 2008, 181:3733-3739.
  • [42]Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K: Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 2005, 32:311-318.
  • [43]Mallia P, Footitt J, Sotero R, Jepson A, Contoli M, Trujillo-Torralbo MB, Kebadze T, Aniscenko J, Oleszkiewicz G, Gray K, et al.: Rhinovirus Infection Induces Degradation of Antimicrobial Peptides and Secondary Bacterial Infection in COPD. Am J Respir Crit Care Med 2012, 186:1117-1124.
  • [44]Schneider D, Ganesan S, Comstock AT, Meldrum CA, Mahidhara R, Goldsmith AM, Curtis JL, Martinez FJ, Hershenson MB, Sajjan U: Increased cytokine response of rhinovirus-infected airway epithelial cells in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010, 182:332-340.
  • [45]Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, Widdicombe JH: Interleukin-13-induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection. Am J Respir Cell Mol Biol 2010, 43:652-661.
  • [46]Eddleston J, Lee RU, Doerner AM, Herschbach J, Zuraw BL: Cigarette smoke decreases innate responses of epithelial cells to rhinovirus infection. Am J Respir Cell Mol Biol 2011, 44:118-126.
  • [47]Hudy MH, Traves SL, Wiehler S, Proud D: Cigarette smoke modulates rhinovirus-induced airway epithelial cell chemokine production. Eur Respir J 2010, 35:1256-1263.
  • [48]Quint JK, Donaldson GC, Goldring JJ, Baghai-Ravary R, Hurst JR, Wedzicha JA: Serum IP-10 as a biomarker of human rhinovirus infection at exacerbation of COPD. Chest 2010, 137:812-822.
  • [49]Warwick G, Thomas PS, Yates DH: Non-invasive biomarkers in exacerbations of obstructive lung disease. Respirology 2013, 18:874-884.
  文献评价指标  
  下载次数:0次 浏览次数:4次