期刊论文详细信息
Molecular Neurodegeneration
Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa
Christoph Winkler3  Utz Fischer2  Jan Brocher4  Jun Yin1 
[1] Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616 USA;Department of Biochemistry, Biocenter, University of Wuerzburg, 97074, Germany;Department of Biological Sciences; National University of Singapore; 117543, Singapore;Division of Experimental Orthopaedics, Orthopaedic University Hospital of Heidelberg, Schlierbacher Landstrasse 200, 69115 Heidelberg, Germany
关键词: splicing defect;    apoptosis;    rod degeneration;    dominant-negative;    haploinsufficiency;    SP117 mutation;    AD5 mutation;    PRPF31;    Retinitis pigmentosa (RP);   
Others  :  865715
DOI  :  10.1186/1750-1326-6-56
 received in 2011-05-23, accepted in 2011-07-30,  发布年份 2011
PDF
【 摘 要 】

Background

Retinitis pigmentosa (RP) is an inherited eye disease characterized by the progressive degeneration of rod photoreceptor cells. Mutations in pre-mRNA splicing factors including PRPF31 have been identified as cause for RP, raising the question how mutations in general factors lead to tissue specific defects.

Results

We have recently shown that the zebrafish serves as an excellent model allowing the recapitulation of key events of RP. Here we use this model to investigate two pathogenic mutations in PRPF31, SP117 and AD5, causing the autosomal dominant form of RP. We show that SP117 leads to an unstable protein that is mislocalized to the rod cytoplasm. Importantly, its overexpression does not result in photoreceptor degeneration suggesting haploinsufficiency as the underlying cause in human RP patients carrying SP117. In contrast, overexpression of AD5 results in embryonic lethality, which can be rescued by wild-type Prpf31. Transgenic retina-specific expression of AD5 reveals that stable AD5 protein is initially localized in the nucleus but later found in the cytoplasm concurrent with progressing rod outer segment degeneration and apoptosis. Importantly, we show for the first time in vivo that retinal transcripts are wrongly spliced in adult transgenic retinas expressing AD5 and exhibiting increased apoptosis in rod photoreceptors.

Conclusion

Our data suggest that distinct mutations in Prpf31 can lead to photoreceptor degeneration through different mechanisms, by haploinsufficiency or dominant-negative effects. Analyzing the AD5 effects in our animal model in vivo, our data imply that aberrant splicing of distinct retinal transcripts contributes to the observed retina defects.

【 授权许可】

   
2011 Yin et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726085902725.pdf 10118KB PDF download
112KB Image download
73KB Image download
204KB Image download
156KB Image download
77KB Image download
45KB Image download
76KB Image download
【 图 表 】

【 参考文献 】
  • [1]Hartong DT, Berson EL, Dryja TP: Retinitis pigmentosa. Lancet 2006, 368:1795-1809.
  • [2]Hamel C: Retinitis pigmentosa. Orphanet J Rare Dis 2006, 1:40. BioMed Central Full Text
  • [3]Inglehearn CF: Molecular genetics of human retinal dystrophies. Eye (Lond) 1998, 12(Pt 3b):571-579.
  • [4]Phelan JK, Bok D: A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vis 2000, 6:116-124.
  • [5]Mordes D, Luo X, Kar A, Kuo D, Xu L, Fushimi K, Yu G, Sternberg P, Wu JY: Pre-mRNA splicing and retinitis pigmentosa. Mol Vis 2006, 12:1259-1271.
  • [6]Vithana E, Al-Maghtheh M, Bhattacharya SS, Inglehearn CF: RP11 is the second most common locus for dominant retinitis pigmentosa. J Med Genet 1998, 35:174-175.
  • [7]Sullivan LS, Bowne SJ, Seaman CR, Blanton SH, Lewis RA, Heckenlively JR, Birch DG, Hughbanks-Wheaton D, Daiger SP: Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2006, 47:4579-4588.
  • [8]Graziotto JJ, Farkas MH, Bujakowska KM, Deramaudt BM, Zhang Q, Nandrot EF, Inglehearn CF, Bhattacharya SS, Pierce EA: Three Gene Targeted Mouse Models of RNA Splicing Factor RP Show Late Onset RPE and Retinal Degeneration. Invest Ophthalmol Vis Sci 2010.
  • [9]Chakarova CF, Hims MM, Bolz H, Abu-Safieh L, Patel RJ, Papaioannou MG, Inglehearn CF, Keen TJ, Willis C, Moore AT, et al.: Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet 2002, 11:87-92.
  • [10]McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ, Greenberg J, Ramesar RS, Hoyng CB, Cremers FP, et al.: Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 2001, 10:1555-1562.
  • [11]Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C, Al-Maghtheh M, Ebenezer ND, Willis C, Moore AT, et al.: A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 2001, 8:375-381.
  • [12]Maita H, Kitaura H, Ariga H, Iguchi-Ariga SM: Association of PAP-1 and Prp3p, the products of causative genes of dominant retinitis pigmentosa, in the tri-snRNP complex. Exp Cell Res 2005, 302:61-68.
  • [13]Maita H, Kitaura H, Keen TJ, Inglehearn CF, Ariga H, Iguchi-Ariga SM: PAP-1, the mutated gene underlying the RP9 form of dominant retinitis pigmentosa, is a splicing factor. Exp Cell Res 2004, 300:283-296.
  • [14]Zhao C, Bellur DL, Lu S, Zhao F, Grassi MA, Bowne SJ, Sullivan LS, Daiger SP, Chen LJ, Pang CP, et al.: Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 2009, 85:617-627.
  • [15]Linder B, Dill H, Hirmer A, Brocher J, Lee GP, Mathavan S, Bolz HJ, Winkler C, Laggerbauer B, Fischer U: Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa. Hum Mol Genet 2011, 20:368-377.
  • [16]Zhou Z, Licklider LJ, Gygi SP, Reed R: Comprehensive proteomic analysis of the human spliceosome. Nature 2002, 419:182-185.
  • [17]Wu JY, Havlioglu N, Yuan L: Alternatively Spliced Genes. Encyclopedia of Molecular Cell Biology and Molecular Medicine. 2nd edition. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2004.
  • [18]Wahl MC, Will CL, Luhrmann R: The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701-718.
  • [19]Weidenhammer EM, Ruiz-Noriega M, Woolford JL Jr: Prp31p promotes the association of the U4/U6 x U5 tri-snRNP with prespliceosomes to form spliceosomes in Saccharomyces cerevisiae. Mol Cell Biol 1997, 17:3580-3588.
  • [20]Liu S, Rauhut R, Vornlocher HP, Luhrmann R: The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. Rna 2006, 12:1418-1430.
  • [21]Makarova OV, Makarov EM, Liu S, Vornlocher HP, Luhrmann R: Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. Embo J 2002, 21:1148-1157.
  • [22]Waseem NH, Vaclavik V, Webster A, Jenkins SA, Bird AC, Bhattacharya SS: Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2007, 48:1330-1334.
  • [23]Martinez-Gimeno M, Gamundi MJ, Hernan I, Maseras M, Milla E, Ayuso C, Garcia-Sandoval B, Beneyto M, Vilela C, Baiget M, et al.: Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2003, 44:2171-2177.
  • [24]Wang L, Ribaudo M, Zhao K, Yu N, Chen Q, Sun Q, Wang L, Wang Q: Novel deletion in the pre-mRNA splicing gene PRPF31 causes autosomal dominant retinitis pigmentosa in a large Chinese family. Am J Med Genet A 2003, 121A:235-239.
  • [25]Xia K, Zheng D, Pan Q, Liu Z, Xi X, Hu Z, Deng H, Liu X, Jiang D, Deng H, Xia J: A novel PRPF31 splice-site mutation in a Chinese family with autosomal dominant retinitis pigmentosa. Mol Vis 2004, 10:361-365.
  • [26]Sato H, Wada Y, Itabashi T, Nakamura M, Kawamura M, Tamai M: Mutations in the pre-mRNA splicing gene, PRPF31, in Japanese families with autosomal dominant retinitis pigmentosa. Am J Ophthalmol 2005, 140:537-540.
  • [27]Rivolta C, McGee TL, Rio Frio T, Jensen RV, Berson EL, Dryja TP: Variation in retinitis pigmentosa-11 (PRPF31 or RP11) gene expression between symptomatic and asymptomatic patients with dominant RP11 mutations. Hum Mutat 2006, 27:644-653.
  • [28]Ivings L, Towns KV, Matin MA, Taylor C, Ponchel F, Grainger RJ, Ramesar RS, Mackey DA, Inglehearn CF: Evaluation of splicing efficiency in lymphoblastoid cell lines from patients with splicing-factor retinitis pigmentosa. Mol Vis 2008, 14:2357-2366.
  • [29]Rio Frio T, Civic N, Ransijn A, Beckmann JS, Rivolta C: Two trans-acting eQTLs modulate the penetrance of PRPF31 mutations. Hum Mol Genet 2008, 17:3154-3165.
  • [30]Deery EC, Vithana EN, Newbold RJ, Gallon VA, Bhattacharya SS, Warren MJ, Hunt DM, Wilkie SE: Disease mechanism for retinitis pigmentosa (RP11) caused by mutations in the splicing factor gene PRPF31. Hum Mol Genet 2002, 11:3209-3219.
  • [31]Yuan L, Kawada M, Havlioglu N, Tang H, Wu JY: Mutations in PRPF31 inhibit pre-mRNA splicing of rhodopsin gene and cause apoptosis of retinal cells. J Neurosci 2005, 25:748-757.
  • [32]Mordes D, Yuan L, Xu L, Kawada M, Molday RS, Wu JY: Identification of photoreceptor genes affected by PRPF31 mutations associated with autosomal dominant retinitis pigmentosa. Neurobiol Dis 2007, 26:291-300.
  • [33]Bujakowska K, Maubaret C, Chakarova CF, Tanimoto N, Beck SC, Fahl E, Humphries MM, Kenna PF, Makarov E, Makarova O, et al.: Study of gene-targeted mouse models of splicing factor gene Prpf31 implicated in human autosomal dominant retinitis pigmentosa (RP). Invest Ophthalmol Vis Sci 2009, 50:5927-5933.
  • [34]Frischmeyer PA, Dietz HC: Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 1999, 8:1893-1900.
  • [35]Khajavi M, Inoue K, Lupski JR: Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 2006, 14:1074-1081.
  • [36]Bhuvanagiri M, Schlitter AM, Hentze MW, Kulozik AE: NMD: RNA biology meets human genetic medicine. Biochem J 2010, 430:365-377.
  • [37]Vithana EN, Abu-Safieh L, Pelosini L, Winchester E, Hornan D, Bird AC, Hunt DM, Bustin SA, Bhattacharya SS: Expression of PRPF31 mRNA in patients with autosomal dominant retinitis pigmentosa: a molecular clue for incomplete penetrance? Invest Ophthalmol Vis Sci 2003, 44:4204-4209.
  • [38]Brockerhoff SE, Fadool JM: Genetics of photoreceptor degeneration and regeneration in zebrafish. Cell Mol Life Sci 2011, 68:651-659.
  • [39]Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicolo M, Kosaras B, Wong G, Gannon KS, Margolskee RF, Sidman RL, et al.: Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Proc Natl Acad Sci USA 2000, 97:13913-13918.
  • [40]Moussaif M, Rubin WW, Kerov V, Reh R, Chen D, Lem J, Chen CK, Hurley JB, Burns ME, Artemyev NO: Phototransduction in a transgenic mouse model of Nougaret night blindness. J Neurosci 2006, 26:6863-6872.
  • [41]Kerov V, Chen D, Moussaif M, Chen YJ, Chen CK, Artemyev NO: Transducin activation state controls its light-dependent translocation in rod photoreceptors. J Biol Chem 2005, 280:41069-41076.
  • [42]Hennig AK, Peng GH, Chen S: Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res 2008, 1192:114-133.
  • [43]Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL: Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 1999, 23:466-470.
  • [44]Martinez-de Luna RI, Moose HE, Kelly LE, Nekkalapudi S, El-Hodiri HM: Regulation of retinal homeobox gene transcription by cooperative activity among cis-elements. Gene 2010, 467:13-24.
  • [45]Nelson SM, Park L, Stenkamp DL: Retinal homeobox 1 is required for retinal neurogenesis and photoreceptor differentiation in embryonic zebrafish. Dev Biol 2009, 328:24-39.
  • [46]Loosli F, Staub W, Finger-Baier KC, Ober EA, Verkade H, Wittbrodt J, Baier H: Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Rep 2003, 4:894-899.
  • [47]Mathers PH, Grinberg A, Mahon KA, Jamrich M: The Rx homeobox gene is essential for vertebrate eye development. Nature 1997, 387:603-607.
  • [48]Winkler S, Loosli F, Henrich T, Wakamatsu Y, Wittbrodt J: The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye. Development 2000, 127:1911-1919.
  • [49]Voronina VA, Kozhemyakina EA, O'Kernick CM, Kahn ND, Wenger SL, Linberg JV, Schneider AS, Mathers PH: Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea. Hum Mol Genet 2004, 13:315-322.
  • [50]Lewis A, Williams P, Lawrence O, Wong RO, Brockerhoff SE: Wild-type cone photoreceptors persist despite neighboring mutant cone degeneration. J Neurosci 2010, 30:382-389.
  • [51]Young L, Dong Q: Two-step total gene synthesis method. Nucleic Acids Res 2004, 32:e59.
  • [52]Kennedy BN, Vihtelic TS, Checkley L, Vaughan KT, Hyde DR: Isolation of a zebrafish rod opsin promoter to generate a transgenic zebrafish line expressing enhanced green fluorescent protein in rod photoreceptors. J Biol Chem 2001, 276:14037-14043.
  • [53]Hamaoka T, Takechi M, Chinen A, Nishiwaki Y, Kawamura S: Visualization of rod photoreceptor development using GFP-transgenic zebrafish. Genesis 2002, 34:215-220.
  • [54]Fadool JM: Development of a rod photoreceptor mosaic revealed in transgenic zebrafish. Dev Biol 2003, 258:277-290.
  • [55]Rembold M, Lahiri K, Foulkes NS, Wittbrodt J: Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 2006, 1:1133-1139.
  • [56]Rasband WS: ImageJ, U. S. In Book ImageJ, U. S. (Editor ed.^eds.). City: National Institutes of Health; 1997-2009.
  文献评价指标  
  下载次数:22次 浏览次数:20次