| Respiratory Research | |
| Mitochondrial DNA alteration in obstructive sleep apnea | |
| Maria P Foschino Barbaro1  Roberto Sabato1  Giulia Patricelli1  Grazia P Palladino1  Grazia Cotugno1  Elisabetta Crisetti1  Giovanna E Carpagnano1  Donato Lacedonia1  | |
| [1] Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, University of Foggia, Viale degli Aviatori, Foggia 71100, Italy | |
| 关键词: ROMs; Oxidative stress; OSAS; Mitochondrial DNA; | |
| Others : 1175085 DOI : 10.1186/s12931-015-0205-7 |
|
| received in 2014-10-22, accepted in 2015-03-13, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Obstructive Sleep Apnea (OSAS) is a disease associated with the increase of cardiovascular risk and it is characterized by repeated episodes of Intermittent Hypoxia (IH) which inducing oxidative stress and systemic inflammation. Mitochondria are cell organelles involved in the respiratory that have their own DNA (MtDNA). The aim of this study was to investigate if the increase of oxidative stress in OSAS patients can induce also MtDNA alterations.
Methods
46 OSAS patients (age 59.27 ± 11.38; BMI 30.84 ± 3.64; AHI 36.63 ± 24.18) were compared with 36 control subjects (age 54.42 ± 6.63; BMI 29.06 ± 4.7; AHI 3.8 ± 1.10). In blood cells Content of MtDNA and nuclear DNA (nDNA) was measured in OSAS patients by Real Time PCR. The ratio between MtDNA/nDNA was then calculated. Presence of oxidative stress was evaluated by levels of Reactive Oxygen Metabolites (ROMs), measured by diacron reactive oxygen metabolite test (d-ROM test).
Results
MtDNA/nDNA was higher in patients with OSAS than in the control group (150.94 ± 49.14 vs 128.96 ± 45.8; p = 0.04), the levels of ROMs were also higher in OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04) and they were positively correlated with MtDNA/nDNA (R = 0.5, p < 0.01).
Conclusions
In OSAS patients there is a Mitochondrial DNA damage induced by the increase of oxidative stress. Intermittent hypoxia seems to be the main mechanism which leads to this process.
【 授权许可】
2015 Lacedonia et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150426092412863.pdf | 588KB | ||
| Figure 2. | 32KB | Image | |
| Figure 1. | 15KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Lavie L: Obstructive sleep apnoea syndrome – an oxidative stress disorder. Sleep Med Rev 2003, 7(1):35-51.
- [2]Hücking K, Hamilton-Wessler M, Ellmerer M, Bergman RN: Burst-like control of lipolysis by the sympathetic nervous system in vivo. J Clin Invest 2003, 111(2):257-64.
- [3]Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, et al.: JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3 T3-L1 adipocytes. J Biol Chem 2005, 280(42):35361-71.
- [4]Di Donato S, Marmolino D, Taroni F: Mitochondrial disorders handbook of the cerebellum and cerebellar disorders. 2013.
- [5]Bogenhagen DF: Mitochondrial DNA nucleoid structure. Biochim Biophys Acta 2012, 1819(9–10):914-20.
- [6]Lee HC, Lu CY, Fahn HJ, Wei YH: Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 1998, 18;441(2):292-6.
- [7]Malik AN, Czajka A: Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 2013, 13(5):481-92.
- [8]American Academy of Sleep Medicine: The International Classification of Sleep Disorders. 2nd edition. 2005.
- [9]Malik AN, Shahni R, Rodriguez-de-Ledesma A, Laftah A, Cunningham P: Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochem Biophys Res Commun 2011, 412(1):1-7.
- [10]Blasi A, Jo JA, Valladares E, Juarez R, Baydur A, Khoo MC: Autonomic cardiovascular control following transient arousal from sleep: a time-varying closed-loop model. IEEE Trans Biomed Eng 2006, 53(1):74-82.
- [11]Meier-Ewert HK, Ridker PM, Rifai N, Regan MM, Price NJ, Dinges DF, et al.: Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol 2004, 43(4):678-83.
- [12]Irwin MR, Wang M, Campomayor CO, Collado-Hidalgo A, Cole S: Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med 2006, 166(16):1756-62.
- [13]Loor G, Kondapalli J, Iwase H, Chandel NS, Waypa GB, Guzy RD, et al.: Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion. Biochim Biophys Acta 2011, 1813(7):1382-94.
- [14]Chatterjee A, Mambo E, Sidransky D: Mitochondrial DNA mutations in human cancer. Oncogene 2006, 25(34):4663-74.
- [15]Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P: Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 2012, 227(6):2297-310.
- [16]Navratil M, Poe BG, Arriaga EA: Quantitation of DNA copy number in individual mitochondrial particles by capillary electrophoresis. Anal Chem 2007, 79(20):7691-9.
- [17]Clay Montier LL, Deng JJ, Bai Y: Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 2009, 36:125-31.
- [18]Bonner MR, Shen M, Liu CS, Divita M, He X, Lan Q: Mitochondrial DNA content and lung cancer risk in Xuan Wei. China Lung Cancer 2009, 63(3):331-4.
- [19]Hurd TR, Costa NJ, Dahm CC, Beer SM, Brown SE, Filipovska A, et al.: Glutathionylation of mitochondrial proteins. Antioxid Redox Signal 2005, 7(7–8):999-1010.
- [20]Lee J, Giordano S, Zhang J: Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 2012, 441(2):523-40.
- [21]Dasgupta S, Soudry E, Mukhopadhyay N, Shao C, Yee J, Lam S, et al.: Mitochondrial DNA mutations in respiratory complex-I in never-smoker lung cancer patients contribute to lung cancer progression and associated with EGFR gene mutation. J Cell Physiol 2012, 227(6):2451-60.
- [22]Sas K, Robotka H, Toldi J, Vécsei L: Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 2007, 257(1–2):221-39.
- [23]Kang IG, Jung JH, Kim ST: The effect of obstructive sleep apnea on DNA damage and oxidative stress. Clin Exp Otorhinolaryngol 2013, 6(2):68-72.
- [24]Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, Hu Y, et al.: Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res 2009, 69(6):2375-83.
- [25]Giacco F, Brownlee M: Oxidative stress and diabetic complications. Circ Res 2010, 107(9):1058-70.
- [26]Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, et al.: Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 2007, 7(1–2):106-18.
- [27]Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ: 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 2003, 124(4):1386-92.
- [28]Christou K, Markoulis N, Moulas AN, Pastaka C, Gourgoulianis KI: Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients. Sleep Breath 2003, 7(3):105-10.
- [29]Ambrosio G, Zweier JL, Duilio C, Kuppusamy P, Santoro G, Elia PP, et al.: Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 1993, 268(25):18532-41.
- [30]Wallace DC, Fan W: Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2010, 10:12-31.
- [31]Di Lisa F, Canton M, Menabò R, Dodoni G, Bernardi P: Mitochondria and reperfusion injury. The role of permeability transition. Basic Res Cardiol 2003, 98(4):235-41.
- [32]Levy P, Tamisier R, Arnaud C, Monneret D, Baguet JP, Stanke-Labesque F, et al.: Sleep deprivation, sleep apnea and cardiovascular diseases. Front Biosci 2012, 1(4):2007-21.
- [33]Malik AN, Shahni R, Iqbal MM: Increased peripheral blood mitochondrial DNA in type 2 diabetic patients with nephropathy. Diabetes Res Clin Pract 2009, 86(2):e22-4.
- [34]Kaaman M, Sparks LM, van Harmelen V, Smith SR, Sjölin E, Dahlman I, et al.: Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia 2007, 50(12):2526-33.
- [35]Ma J, Zhang Q, Chen S, Fang B, Yang Q, Chen C, et al.: Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species. PLoS One 2013, 8(7):e69485.
- [36]Yang Ai SS, Hsu K, Herbert C, Cheng Z, Hunt J, Lewis CR, et al.: Mitochondrial DNA mutations in exhaled breath condensate of patients with lung cancer. Respir Med 2013, 107(6):911-8.
- [37]Wang Y, Liu VW, Xue WC, Tsang PC, Cheung AN, Ngan HY: The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: a quantitative study using laser-captured microdissected tissues. Gynecol Oncol 2005, 98(1):104-10.
- [38]Xing J, Chen M, Wood CG, Lin J, Spitz MR, Ma J, et al.: Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J Natl Cancer Inst 2008, 100(15):1104-12.
- [39]Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C: Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 2013, 305(4):H459-76.
- [40]Slebos DJ, van der Toorn M, Bakker SJ, Kauffman HF: Mitochondrial dysfunction in COPD patients with low body mass index. Eur Respir J 2007, 30(3):600.
PDF