期刊论文详细信息
Radiation Oncology
Endothelial perturbations and therapeutic strategies in normal tissue radiation damage
Stanley K Liu2  Elina Korpela1 
[1] Department of Medical Biophysics, University of Toronto, 101 College St., Toronto M5G 1L7, Canada;Department of Radiation Oncology, University of Toronto, 149 College St., Toronto M5T 1P5, Canada
关键词: Senescence;    Inflammation;    Cell death;    Radioprotection;    Microvasculature;    Endothelial cell;    Acute radiation toxicity;    Radiotherapy;   
Others  :  1150436
DOI  :  10.1186/s13014-014-0266-7
 received in 2014-08-14, accepted in 2014-11-18,  发布年份 2014
PDF
【 摘 要 】

Most cancer patients are treated with radiotherapy, but the treatment can also damage the surrounding normal tissue. Radiotherapy side-effects diminish patients’ quality of life, yet effective biological interventions for normal tissue damage are lacking. Protecting microvascular endothelial cells from the effects of irradiation is emerging as a targeted damage-reduction strategy. We illustrate the concept of the microvasculature as a mediator of overall normal tissue radiation toxicity through cell death, vascular inflammation (hemodynamic and molecular changes) and a change in functional capacity. Endothelial cell targeted therapies that protect against such endothelial cell perturbations and the development of acute normal tissue damage are mostly under preclinical development. Since acute radiation toxicity is a common clinical problem in cutaneous, gastrointestinal and mucosal tissues, we also focus on damage in these tissues.

【 授权许可】

   
2014 Korpela and Liu; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150405183712138.pdf 398KB PDF download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Liauw SL, Connell PP, Weichselbaum RR: New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med 2013, 5:173sr172.
  • [2]Pignol JP, Olivotto I, Rakovitch E, Gardner S, Sixel K, Beckham W, Vu TT, Truong P, Ackerman I, Paszat L: A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol 2008, 26:2085-2092.
  • [3]Gupta T, Agarwal J, Jain S, Phurailatpam R, Kannan S, Ghosh-Laskar S, Murthy V, Budrukkar A, Dinshaw K, Prabhash K, Chaturvedi P, D’Cruz A: Three-dimensional conformal radiotherapy (3D-CRT) versus intensity modulated radiation therapy (IMRT) in squamous cell carcinoma of the head and neck: a randomized controlled trial. Radiother Oncol 2012, 104:343-348.
  • [4]Kronowitz SJ: Current status of implant-based breast reconstruction in patients receiving postmastectomy radiation therapy. Plast Reconstr Surg 2012, 130:513e-523e.
  • [5]Bese NS, Hendry J, Jeremic B: Effects of prolongation of overall treatment time due to unplanned interruptions during radiotherapy of different tumor sites and practical methods for compensation. Int J Radiat Oncol Biol Phys 2007, 68:654-661.
  • [6]Aleman BM, van den Belt-Dusebout AW, De Bruin ML, Van ’t Veer MB, Baaijens MH, de Boer JP, Hart AA, Klokman WJ, Kuenen MA, Ouwens GM, Bartelink H, van Leeuwen FE: Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood 2007, 109:1878-1886.
  • [7]Chan RJ, Webster J, Chung B, Marquart L, Ahmed M, Garantziotis S: Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer 2014, 14:53. BioMed Central Full Text
  • [8]Bardet E, Martin L, Calais G, Alfonsi M, Feham NE, Tuchais C, Boisselier P, Dessard-Diana B, Seng SH, Garaud P, Auperin A, Bourhis J: Subcutaneous compared with intravenous administration of amifostine in patients with head and neck cancer receiving radiotherapy: final results of the GORTEC2000-02 phase III randomized trial. J Clin Oncol 2011, 29:127-133.
  • [9]Moding EJ, Kastan MB, Kirsch DG: Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 2013, 12:526-542.
  • [10]Savoye C, Swenberg C, Hugot S, Sy D, Sabattier R, Charlier M, Spotheim-Maurizot M: Thiol WR-1065 and disulphide WR-33278, two metabolites of the drug ethyol (WR-2721), protect DNA against fast neutron-induced strand breakage. Int J Radiat Biol 1997, 71:193-202.
  • [11]Murley JS, Kataoka Y, Baker KL, Diamond AM, Morgan WF, Grdina DJ: Manganese superoxide dismutase (SOD2)-mediated delayed radioprotection induced by the free thiol form of amifostine and tumor necrosis factor alpha. Radiat Res 2007, 167:465-474.
  • [12]Rubin DB, Drab EA, Kang HJ, Baumann FE, Blazek ER: WR-1065 and radioprotection of vascular endothelial cells. I. cell proliferation, DNA synthesis and damage. Radiat Res 1996, 145:210-216.
  • [13]Sigdestad CP, Treacy SH, Knapp LA, Grdina DJ: The effect of 2-[(aminopropyl)amino] ethanethiol (WR-1065) on radiation induced DNA double strand damage and repair in V79 cells. Br J Cancer 1987, 55:477-482.
  • [14]Dziegielewski J, Baulch JE, Goetz W, Coleman MC, Spitz DR, Murley JS, Grdina DJ, Morgan WF: WR-1065, the active metabolite of amifostine, mitigates radiation-induced delayed genomic instability. Free Radic Biol Med 2008, 45:1674-1681.
  • [15]Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB: Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 2008, 100:773-783.
  • [16]Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV: A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 1999, 285:1733-1737.
  • [17]Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, Kurnasov OV, Fort FL, Osterman AL, Didonato JA, Feinstein E, Gudkov AV: An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008, 320:226-230.
  • [18]Burdelya LG, Gleiberman AS, Toshkov I, Aygun-Sunar S, Bapardekar M, Manderscheid-Kern P, Bellnier D, Krivokrysenko VI, Feinstein E, Gudkov AV: Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys 2012, 83:228-234.
  • [19]Brizel DM, Murphy BA, Rosenthal DI, Pandya KJ, Gluck S, Brizel HE, Meredith RF, Berger D, Chen MG, Mendenhall W: Phase II study of palifermin and concurrent chemoradiation in head and neck squamous cell carcinoma. J Clin Oncol 2008, 26:2489-2496.
  • [20]Flanders KC, Ho BM, Arany PR, Stuelten C, Mamura M, Paterniti MO, Sowers A, Mitchell JB, Roberts AB: Absence of Smad3 induces neutrophil migration after cutaneous irradiation: possible contribution to subsequent radioprotection. Am J Pathol 2008, 173:68-76.
  • [21]Viswanath L, Bindhu J, Krishnamurthy B, Suresh KP: Granulocyte-Colony Stimulating Factor (G-CSF) accelerates healing of radiation induced moist desquamation of the skin. Klin Onkol 2012, 25:199-205.
  • [22]Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS: Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 1986, 83:4167-4171.
  • [23]Flanders KC, Major CD, Arabshahi A, Aburime EE, Okada MH, Fujii M, Blalock TD, Schultz GS, Sowers A, Anzano MA, Mitchell JB, Russo A, Roberts AB: Interference with transforming growth factor-beta/ Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. Am J Pathol 2003, 163:2247-2257.
  • [24]Scharpfenecker M, Floot B, Russell NS, Coppes RP, Stewart FA: Endoglin haploinsufficiency attenuates radiation-induced deterioration of kidney function in mice. Radiother Oncol 2013, 108:464-468.
  • [25]Seemann I, Te Poele JA, Luikinga SJ, Hoving S, Stewart FA: Endoglin haplo-insufficiency modifies the inflammatory response in irradiated mouse hearts without affecting structural and mircovascular changes. PLoS One 2013, 8:e68922.
  • [26]Archambeau JO, Pezner R, Wasserman T: Pathophysiology of irradiated skin and breast. Int J Radiat Oncol Biol Phys 1995, 31:1171-1185.
  • [27]Stewart FA, Seemann I, Hoving S, Russell NS: Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol (R Coll Radiol) 2013, 25:617-624.
  • [28]Dimitrievich GS, Fischer-Dzoga K, Griem ML: Radiosensitivity of vascular tissue. I. differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat Res 1984, 99:511-535.
  • [29]Sabatasso S, Laissue JA, Hlushchuk R, Graber W, Bravin A, Brauer-Krisch E, Corde S, Blattmann H, Gruber G, Djonov V: Microbeam radiation-induced tissue damage depends on the stage of vascular maturation. Int J Radiat Oncol Biol Phys 2011, 80:1522-1532.
  • [30]Langley RE, Bump EA, Quartuccio SG, Medeiros D, Braunhut SJ: Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer 1997, 75:666-672.
  • [31]Fuks Z, Persaud RS, Alfieri A, McLoughlin M, Ehleiter D, Schwartz JL, Seddon AP, Cordon-Cardo C, Haimovitz-Friedman A: Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 1994, 54:2582-2590.
  • [32]Burrell K, Hill RP, Zadeh G: High-resolution in-vivo analysis of normal brain response to cranial irradiation. PLoS One 2012, 7:e38366.
  • [33]Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R: Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001, 293:293-297.
  • [34]Xu J, Yan X, Gao R, Mao L, Cotrim AP, Zheng C, Zhang C, Baum BJ, Wang S: Effect of irradiation on microvascular endothelial cells of parotid glands in the miniature pig. Int J Radiat Oncol Biol Phys 2010, 78:897-903.
  • [35]Lee CL, Moding EJ, Cuneo KC, Li Y, Sullivan JM, Mao L, Washington I, Jeffords LB, Rodrigues RC, Ma Y, Das S, Kontos CD, Kim Y, Rockman HA, Kirsch DG: p53 functions in endothelial cells to prevent radiation-induced myocardial injury in mice. Sci Signal 2012, 5:ra52.
  • [36]Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R: Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 1996, 86:189-199.
  • [37]Marathe S, Schissel SL, Yellin MJ, Beatini N, Mintzer R, Williams KJ, Tabas I: Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J Biol Chem 1998, 273:4081-4088.
  • [38]Lu F, Li YQ, Aubert I, Wong CS: Endothelial cells regulate p53-dependent apoptosis of neural progenitors after irradiation. Cell Death Dis 2012, 3:e324.
  • [39]Rotolo JA, Maj JG, Feldman R, Ren D, Haimovitz-Friedman A, Cordon-Cardo C, Cheng EH, Kolesnick R, Fuks Z: Bax and Bak do not exhibit functional redundancy in mediating radiation-induced endothelial apoptosis in the intestinal mucosa. Int J Radiat Oncol Biol Phys 2008, 70:804-815.
  • [40]Haimovitz-Friedman A, Vlodavsky I, Chaudhuri A, Witte L, Fuks Z: Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res 1991, 51:2552-2558.
  • [41]Pena LA, Fuks Z, Kolesnick RN: Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 2000, 60:321-327.
  • [42]Cho CH, Kammerer RA, Lee HJ, Yasunaga K, Kim KT, Choi HH, Kim W, Kim SH, Park SK, Lee GM, Koh GY: Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci U S A 2004, 101:5553-5558.
  • [43]Schuller BW, Rogers AB, Cormier KS, Riley KJ, Binns PJ, Julius R, Hawthorne MF, Coderre JA: No significant endothelial apoptosis in the radiation-induced gastrointestinal syndrome. Int J Radiat Oncol Biol Phys 2007, 68:205-210.
  • [44]Rotolo J, Stancevic B, Zhang J, Hua G, Fuller J, Yin X, Haimovitz-Friedman A, Kim K, Qian M, Cardo-Vila M, Fuks Z, Pasqualini R, Arap W, Kolesnick R: Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest 2012, 122:1786-1790.
  • [45]Abderrahmani R, Francois A, Buard V, Tarlet G, Blirando K, Hneino M, Vaurijoux A, Benderitter M, Sabourin JC, Milliat F: PAI-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury. PLoS One 2012, 7:e35740.
  • [46]Doan PL, Russell JL, Himburg HA, Helms K, Harris JR, Lucas J, Holshausen KC, Meadows SK, Daher P, Jeffords LB, Chao NJ, Kirsch DG, Chute JP: Tie2(+) bone marrow endothelial cells regulate hematopoietic stem cell regeneration following radiation injury. Stem Cells 2013, 31:327-337.
  • [47]Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, Degraff WG, Tsokos M, Wink DA, Isenberg JS, Roberts DD: Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med 2009, 1:3ra7.
  • [48]Kirsch DG, Santiago PM, di Tomaso E, Sullivan JM, Hou WS, Dayton T, Jeffords LB, Sodha P, Mercer KL, Cohen R, Takeuchi O, Korsmeyer SJ, Bronson RT, Kim CF, Haigis KM, Jain RK, Jacks T: p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 2010, 327:593-596.
  • [49]Jolles B, Harrison RG: Radiation skin reaction and depletion and restoration of body immune response. Nature 1963, 198:1216-1217.
  • [50]Sharma P, Templin T, Grabham P: Short term effects of gamma radiation on endothelial barrier function: uncoupling of PECAM-1. Microvasc Res 2013, 86:11-20.
  • [51]Chin MS, Freniere BB, Lo YC, Saleeby JH, Baker SP, Strom HM, Ignotz RA, Lalikos JF, Fitzgerald TJ: Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin. J Biomed Opt 2012, 17:026010.
  • [52]Song CW, Kim JH, Rhee JG, Levitt SH: Effect of X irradiation and hyperthermia on vascular function in skin and muscle. Radiat Res 1983, 94:404-415.
  • [53]Simonen P, Hamilton C, Ferguson S, Ostwald P, O’Brien M, O’Brien P, Back M, Denham J: Do inflammatory processes contribute to radiation induced erythema observed in the skin of humans? Radiother Oncol 1998, 46:73-82.
  • [54]Denham JW, Hamilton CS, Simpson SA, Ostwald PM, O’Brien M, Kron T, Joseph DJ, Dear KB: Factors influencing the degree of erythematous skin reactions in humans. Radiother Oncol 1995, 36:107-120.
  • [55]Thanik VD, Chang CC, Zoumalan RA, Lerman OZ, Allen RJ Jr, Nguyen PD, Warren SM, Coleman SR, Hazen A: A novel mouse model of cutaneous radiation injury. Plast Reconstr Surg 2011, 127:560-568.
  • [56]Roth NM, Sontag MR, Kiani MF: Early effects of ionizing radiation on the microvascular networks in normal tissue. Radiat Res 1999, 151:270-277.
  • [57]Kollias N, Gillies R, Muccini JA, Uyeyama RK, Phillips SB, Drake LA: A single parameter, oxygenated hemoglobin, can be used to quantify experimental irritant-induced inflammation. J Invest Dermatol 1995, 104:421-424.
  • [58]Stamatas GN, Kollias N: In vivo documentation of cutaneous inflammation using spectral imaging. J Biomed Opt 2007, 12:051603.
  • [59]Yohan D, Kim A, Korpela E, Liu SK, Niu C, Wilson BC, Chin LCL: Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy. Biomed Opt Express 2014, 5:1309-1320.
  • [60]Chin MS, Freniere BB, Bonney CF, Lancerotto L, Saleeby JH, Lo YC, Orgill DP, Fitzgerald TJ, Lalikos JF: Skin perfusion and oxygenation changes in radiation fibrosis. Plast Reconstr Surg 2013, 131:707-716.
  • [61]Turesson I, Nyman J, Holmberg E, Oden A: Prognostic factors for acute and late skin reactions in radiotherapy patients. Int J Radiat Oncol Biol Phys 1996, 36:1065-1075.
  • [62]Wells M, Macmillan M, Raab G, MacBride S, Bell N, MacKinnon K, MacDougall H, Samuel L, Munro A: Does aqueous or sucralfate cream affect the severity of erythematous radiation skin reactions? A randomised controlled trial. Radiother Oncol 2004, 73:153-162.
  • [63]Korpela E, Yohan D, Chin LC, Kim A, Huang X, Sade S, Van Slyke P, Dumont DJ, Liu SK: Vasculotide, an Angiopoietin-1 mimetic, reduces acute skin ionizing radiation damage in a preclinical mouse model. BMC Cancer 2014, 14:614. BioMed Central Full Text
  • [64]Pober JS, Sessa WC: Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 2007, 7:803-815.
  • [65]Williams MR, Azcutia V, Newton G, Alcaide P, Luscinskas FW: Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol 2011, 32:461-469.
  • [66]Halle M, Gabrielsen A, Paulsson-Berne G, Gahm C, Agardh HE, Farnebo F, Tornvall P: Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J Am Coll Cardiol 2010, 55:1227-1236.
  • [67]Liu W, Ding I, Chen K, Olschowka J, Xu J, Hu D, Morrow GR, Okunieff P: Interleukin 1beta (IL1B) signaling is a critical component of radiation-induced skin fibrosis. Radiat Res 2006, 165:181-191.
  • [68]Janko M, Ontiveros F, Fitzgerald TJ, Deng A, DeCicco M, Rock KL: IL-1 generated subsequent to radiation-induced tissue injury contributes to the pathogenesis of radiodermatitis. Radiat Res 2012, 178:166-172.
  • [69]Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S: The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813, 2011:878-888.
  • [70]Nishimoto N, Kishimoto T: Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol 2006, 2:619-626.
  • [71]Chou CH, Chen SU, Cheng JC: Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha. Int J Radiat Oncol Biol Phys 2009, 75:1553-1561.
  • [72]Wung BS, Ni CW, Wang DL: ICAM-1 induction by TNFalpha and IL-6 is mediated by distinct pathways via Rac in endothelial cells. J Biomed Sci 2005, 12:91-101.
  • [73]Patchen ML, MacVittie TJ, Williams JL, Schwartz GN, Souza LM: Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood 1991, 77:472-480.
  • [74]Patchen ML, Fischer R, MacVittie TJ: Effects of combined administration of interleukin-6 and granulocyte colony-stimulating factor on recovery from radiation-induced hemopoietic aplasia. Exp Hematol 1993, 21:338-344.
  • [75]Gaugler MH, Vereycken-Holler V, Squiban C, Vandamme M, Vozenin-Brotons MC, Benderitter M: Pravastatin limits endothelial activation after irradiation and decreases the resulting inflammatory and thrombotic responses. Radiat Res 2005, 163:479-487.
  • [76]Rovai LE, Herschman HR, Smith JB: The murine neutrophil-chemoattractant chemokines LIX, KC, and MIP-2 have distinct induction kinetics, tissue distributions, and tissue-specific sensitivities to glucocorticoid regulation in endotoxemia. J Leukoc Biol 1998, 64:494-502.
  • [77]Meeren AV, Bertho JM, Vandamme M, Gaugler MH: Ionizing radiation enhances IL-6 and IL-8 production by human endothelial cells. Mediators Inflamm 1997, 6:185-193.
  • [78]Fox J, Gordon JR, Haston CK: Combined CXCR1/CXCR2 antagonism decreases radiation-induced alveolitis in the mouse. Radiat Res 2011, 175:657-664.
  • [79]Petrache I, Birukova A, Ramirez SI, Garcia JG, Verin AD: The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol 2003, 28:574-581.
  • [80]Hill RP, Zaidi A, Mahmood J, Jelveh S: Investigations into the role of inflammation in normal tissue response to irradiation. Radiother Oncol 2011, 101:73-79.
  • [81]Flechsig P, Dadrich M, Bickelhaupt S, Jenne J, Hauser K, Timke C, Peschke P, Hahn EW, Grone HJ, Yingling J, Lahn M, Wirkner U, Huber PE: LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-beta and BMP-associated proinflammatory and proangiogenic signals. Clin Cancer Res 2012, 18:3616-3627.
  • [82]Katzel EB, Koltz PF, Tierney R, Williams JP, Awad HA, O’Keefe RJ, Langstein HN: The impact of Smad3 loss of function on TGF-beta signaling and radiation-induced capsular contracture. Plast Reconstr Surg 2011, 127:2263-2269.
  • [83]Flanders KC, Sullivan CD, Fujii M, Sowers A, Anzano MA, Arabshahi A, Major C, Deng C, Russo A, Mitchell JB, Roberts AB: Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 2002, 160:1057-1068.
  • [84]Han G, Bian L, Li F, Cotrim A, Wang D, Lu J, Deng Y, Bird G, Sowers A, Mitchell JB, Gutkind JS, Zhao R, Raben D, ten Dijke P, Refaeli Y, Zhang Q, Wang XJ: Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med 2013, 19:421-428.
  • [85]Hallahan DE, Virudachalam S: Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation. Proc Natl Acad Sci U S A 1997, 94:6432-6437.
  • [86]Holler V, Buard V, Gaugler MH, Guipaud O, Baudelin C, Sache A, Perez Mdel R, Squiban C, Tamarat R, Milliat F, Benderitter M: Pravastatin limits radiation-induced vascular dysfunction in the skin. J Invest Dermatol 2009, 129:1280-1291.
  • [87]Kolaczkowska E, Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013, 13:159-175.
  • [88]Liang L, Hu D, Liu W, Williams JP, Okunieff P, Ding I: Celecoxib reduces skin damage after radiation: selective reduction of chemokine and receptor mRNA expression in irradiated skin but not in irradiated mammary tumor. Am J Clin Oncol 2003, 26:S114-S121.
  • [89]Thomas DM, Fox J, Haston CK: Imatinib therapy reduces radiation-induced pulmonary mast cell influx and delays lung disease in the mouse. Int J Radiat Biol 2010, 86:436-444.
  • [90]Blirando K, Milliat F, Martelly I, Sabourin JC, Benderitter M, Francois A: Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice. Am J Pathol 2011, 178:640-651.
  • [91]Oh CW, Bump EA, Kim JS, Janigro D, Mayberg MR: Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation. Radiat Res 2001, 156:232-240.
  • [92]Yentrapalli R, Azimzadeh O, Sriharshan A, Malinowsky K, Merl J, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Becker KF, Haghdoost S, Tapio S: The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One 2013, 8:e70024.
  • [93]Erusalimsky JD: Vascular endothelial senescence: from mechanisms to pathophysiology. J Appl Physiol (1985) 2009, 106:326-332.
  • [94]Park MT, Oh ET, Song MJ, Lee H, Park HJ: Radio-sensitivities and angiogenic signaling pathways of irradiated normal endothelial cells derived from diverse human organs. J Radiat Res 2012, 53:570-580.
  • [95]Lyubimova N, Hopewell JW: Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol 2004, 77:488-492.
  • [96]Jourdan MM, Lopez A, Olasz EB, Duncan NE, Demara M, Kittipongdaja W, Fish BL, Mader M, Schock A, Morrow NV, Semenenko VA, Baker JE, Moulder JE, Lazarova Z: Laminin 332 deposition is diminished in irradiated skin in an animal model of combined radiation and wound skin injury. Radiat Res 2011, 176:636-648.
  • [97]Denham JW, Hauer-Jensen M: The radiotherapeutic injury–a complex ‘wound’. Radiother Oncol 2002, 63:129-145.
  • [98]Ahmad M, Khurana NR, Jaberi JE: Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc Res 2007, 73:14-19.
  • [99]Imaizumi N, Monnier Y, Hegi M, Mirimanoff RO, Ruegg C: Radiotherapy suppresses angiogenesis in mice through TGF-betaRI/ALK5-dependent inhibition of endothelial cell sprouting. PLoS One 2010, 5:e11084.
  • [100]Adams MJ, Lipshultz SE, Schwartz C, Fajardo LF, Coen V, Constine LS: Radiation-associated cardiovascular disease: manifestations and management. Semin Radiat Oncol 2003, 13:346-356.
  • [101]Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I: Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 2002, 105:1541-1544.
  • [102]Gabriels K, Hoving S, Seemann I, Visser NL, Gijbels MJ, Pol JF, Daemen MJ, Stewart FA, Heeneman S: Local heart irradiation of ApoE(−/−) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis. Radiother Oncol 2012, 105:358-364.
  • [103]Seemann I, Gabriels K, Visser NL, Hoving S, te Poele JA, Pol JF, Gijbels MJ, Janssen BJ, van Leeuwen FW, Daemen MJ, Heeneman S, Stewart FA: Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol 2012, 103:143-150.
  • [104]Beckman JA, Thakore A, Kalinowski BH, Harris JR, Creager MA: Radiation therapy impairs endothelium-dependent vasodilation in humans. J Am Coll Cardiol 2001, 37:761-765.
  • [105]Belloni PN, Carney DH, Nicolson GL: Organ-derived microvessel endothelial cells exhibit differential responsiveness to thrombin and other growth factors. Microvasc Res 1992, 43:20-45.
  • [106]Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG, James D, Ding BS, Schachterle W, Liu Y, Rosenwaks Z, Butler JM, Xiang J, Rafii A, Shido K, Rabbany SY, Elemento O, Rafii S: Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 2013, 26:204-219.
  • [107]Junttila MR, de Sauvage FJ: Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501:346-354.
  • [108]de Jongh RT, Serne EH, IJzerman RG, de Vries G, Stehouwer CD: Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation 2004, 109:2529-2535.
  • [109]Hunter GK, Reddy CA, Klein EA, Kupelian P, Angermeier K, Ulchaker J, Chehade N, Altman A, Ciezki JP: Long-term (10-year) gastrointestinal and genitourinary toxicity after treatment with external beam radiotherapy, radical prostatectomy, or brachytherapy for prostate cancer. Prostate Cancer 2012, 2012:853487.
  文献评价指标  
  下载次数:12次 浏览次数:9次