期刊论文详细信息
Radiation Oncology
Hippocampal proton MR spectroscopy as a novel approach in the assessment of radiation injury and the correlation to neurocognitive function impairment: initial experiences
Radim Jancalek6  Pavel Slampa5  Ludmila Hynkova5  Petr Burkon5  Marie Dobiaskova4  Martin Bulik2  Tomas Kazda1  Petr Pospisil3 
[1] International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic;Department of Diagnostic Imaging, St. Anne’s University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic;Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic;Department of Clinical Psychology, St. Anne’s University Hospital Brno, Pekarska 53, Brno, Czech Republic;Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic;Department of Neurosurgery, St. Anne’s University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
关键词: Magnetic resonance spectroscopy;    Neurocognitive function;    Radiation injury;    Hippocampus;   
Others  :  1228935
DOI  :  10.1186/s13014-015-0518-1
 received in 2015-05-25, accepted in 2015-10-06,  发布年份 2015
PDF
【 摘 要 】

Background

The hippocampus is considered as the main radiosensitive brain structure responsible for postradiotherapy cognitive decline. We prospectively assessed correlation of memory change to hippocampal N-acetylaspartate (h-tNAA) concentration, a neuronal density and viability marker, by1 H-MR spectroscopy focused on the hippocampus.

Methods

Patients with brain metastases underwent whole brain radiotherapy (WBRT) to a dose of 30 Gy in ten fractions daily. Pre-radiotherapy1 H-MR spectroscopy focused on the h-tNAA concentration and memory testing was performed. Memory was evaluated by Auditory Verbal Learning Test (AVLT) and Brief Visuospatial Memory Test-Revised (BVMT-R). Total recall, recognition and delayed recall were reported. The both investigation procedures were repeated 4 months after WBRT and the h-tNAA and memory changes were correlated.

Results

Of the 20 patients, ten passed whole protocol. The h-tNAA concentration significantly decreased from pre-WBRT 8.9, 8.86 and 8.88 [mM] in the right, left and both hippocampi to 7.16, 7.65 and 7.4 after WBRT, respectively. In the memory tests a significant decrease was observed in AVLT total-recall, BVMT-R total-recall and BVMT-R delayed-recall. Weak to moderate correlations were observed between left h-tNAA and AVLT recognition and all BVMT-R subtests and between the right h-tNAA and AVLT total-recall.

Conclusions

A significant decrease in h-tNAA after WBRT was proven by1 H-MR spectroscopy as a feasible method for the in vivo investigation of radiation injury. Continuing patient recruitment focusing on other cognitive tests and metabolites is needed.

【 授权许可】

   
2015 Pospisil et al.

【 预 览 】
附件列表
Files Size Format View
20151020080202511.pdf 704KB PDF download
Fig. 2. 66KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Tabouret E, Chinot O, Metellus P, Tallet A, Viens P, Gonçalves A, et al. Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 2012;32:4655–62.
  • [2]Laack NN, Brown PD. Cognitive sequelae of brain radiation in adults. Semin Oncol. 2004; 31:702-13.
  • [3]Tallet AV, Azria D, Barlesi F, Spano J-P, Carpentier AF, Gonçalves A et al.. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol. 2012; 7:77. BioMed Central Full Text
  • [4]Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A et al.. Preservation of Memory With Conformal Avoidance of the Hippocampal Neural Stem-Cell Compartment During Whole-Brain Radiotherapy for Brain Metastases (RTOG 0933): A Phase II Multi-Institutional Trial. J Clin Oncol. 2014; 32(34):3810-6.
  • [5]Gondi V, Hermann BP, Mehta MP, Tomé WA. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys. 2013; 85:348-54.
  • [6]Suh JH. Hippocampal-Avoidance Whole-Brain Radiation Therapy: A New Standard for Patients With Brain Metastases? J Clin Oncol. 2014; 32(34):3789-91.
  • [7]Brown PD, Pugh S, Laack NN, Wefel JS, Khuntia D, Meyers C et al.. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 2013; 15:1429-37.
  • [8]Kazda T, Jancalek R, Pospisil P, Sevela O, Prochazka T, Vrzal M et al.. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol. 2014; 9:139. BioMed Central Full Text
  • [9]Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007; 81:89-131.
  • [10]Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD, et al. Radiation-induced brain injury: A review. Front Oncol. 2012;2:73.
  • [11]Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med. 2002; 8:955-62.
  • [12]Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol. 2003; 16:129-34.
  • [13]Sperduto PW, Berkey B, Gaspar LE, Mehta M, Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys. 2008; 70(2):510-4.
  • [14]Mrzílkova J, Koutela A, Kutova M, Patzelt M, Ibrahim I, Al-Kayssi D et al.. Hippocampal spatial position evaluation on MRI for research and clinical practice. PLoS One. 2014; 9(12):e115174.
  • [15]Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001; 14(4):260-4.
  • [16]Jiru F, Skoch A, Wagnerova D, Dezortova M, Hajek M. jSIPRO - analysis tool for magnetic resonance spectroscopic imaging. Comput Methods Programs Biomed. 2013; 112(1):173-88.
  • [17]Jiru F, Skoch A, Klose U, Grodd W, Hajek M. Error images for spectroscopic imaging by LCModel using Cramer-Rao bounds. MAGMA. 2006; 19(1):1-14.
  • [18]Koay E, Sulman EP. Management of brain metastasis: past lessons, modern management, and future considerations. Curr Oncol Rep. 2012; 14(1):70-8.
  • [19]Kazda T, Pospíšil P, Doleželová H, Jančálek R, Slampa P. Whole brain radiotherapy: Consequences for personalized medicine. Rep Pract Oncol Radiother. 2013; 18(3):133-8.
  • [20]Rock EP, Fine HA, Meyers CA. Refining endpoints in brain tumor clinical trials. J Neurooncol. 2012; 108(2):227-30.
  • [21]Taphoorn MJB, Klein M. Cognitive deficits in adult patients with brain tumours. Lancet Neurol. 2004; 3(3):159-68.
  • [22]Wong CS, Van der Kogel AJ. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv. 2004; 4(5):273-84.
  • [23]Mehta MP, Gondi V, Tomé WA. Why avoid the hippocampus? A comprehensive review. Radiother Oncol. 2010; 97(3):370-6.
  • [24]Awad R, Fogarty G, Hong A, Kelly P, Ng D, Santos D et al.. Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases - the first Australian experience. Radiat Oncol. 2013; 8:62. BioMed Central Full Text
  • [25]Mehta MP, Shapiro WR, Phan SC, Gervais R, Carrie C, Chabot P et al.. Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non-small-cell lung cancer patients with brain metastases: results of a phase III trial. Int J Radiat Oncol Biol Phys. 2009; 73(4):1069-76.
  • [26]Rooney JW, Laack NN. Pharmacological interventions to treat or prevent neurocognitive decline after brain radiation. CNS Oncol. 2013; 2(6):531-41.
  • [27]Kantarci K. Proton MRS in mild cognitive impairment. J Magn Reson Imaging. 2013; 37(4):770-7.
  • [28]Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev. 2013; 37(10 Pt 2):2571-86.
  • [29]Targosz-Gajniak MG, Siuda JS, Wicher MM, Banasik TJ, Bujak MA, Augusciak-Duma AM et al.. Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. J Neurol Sci. 2013; 335(1–2):58-63.
  • [30]Kantarci K, Weigand SD, Przybelski SA, Preboske GM, Pankratz VS, Vemuri P et al.. MRI and MRS predictors of mild cognitive impairment in a population-based sample. Neurology. 2013; 81(2):126-33.
  • [31]Usenius T, Usenius JP, Tenhunen M, Vainio P, Johansson R, Soimakallio S et al.. Radiation-induced changes in human brain metabolites as studied by 1H nuclear magnetic resonance spectroscopy in vivo. Int J Radiat Oncol Biol Phys. 1995; 33(3):719-24.
  • [32]Estève F, Rubin C, Grand S, Kolodié H, Le Bas JF. Transient metabolic changes observed with proton MR spectroscopy in normal human brain after radiation therapy. Int J Radiat Oncol Biol Phys. 1998; 40(2):279-86.
  • [33]Movsas B, Li BS, Babb JS, Fowble BL, Nicolaou N, Gonen O, et al. Quantifying radiation therapy-induced brain injury with whole-brain proton MR spectroscopy: initial observations. Radiology. 2001;221(2):327–31.
  • [34]Lee MC, Pirzkall A, McKnight TR, Nelson SJ. 1H-MRSI of radiation effects in normal-appearing white matter: dose-dependence and impact on automated spectral classification. J Magn Reson Imaging. 2004; 19(4):379-88.
  • [35]Kaminaga T, Shirai K. Radiation-induced brain metabolic changes in the acute and early delayed phase detected with quantitative proton magnetic resonance spectroscopy. J Comput Assist Tomogr. 2005; 29(3):293-7.
  • [36]Sundgren PC, Nagesh V, Elias A, Tsien C, Junck L, Gomez Hassan DM et al.. Metabolic alterations: a biomarker for radiation-induced normal brain injury-an MR spectroscopy study. J Magn Reson Imaging. 2009; 29(2):291-7.
  • [37]Chawla S, Wang S, Kim S, Sheriff S, Lee P, Rengan R et al.. Radiation Injury to the Normal Brain Measured by 3D-Echo-Planar Spectroscopic Imaging and Diffusion Tensor Imaging: Initial Experience. J Neuroimaging. 2015; 25(1):97-104.
  • [38]Lee TM, Yip JT, Jones-Gotman M. Memory deficits after resection from left or right anterior temporal lobe in humans: a meta-analytic review. Epilepsia. 2002; 43(3):283-91.
  • [39]Patel SK, Wong AL, Wong FL, Breen EC, Hurria A, Smith M et al.. Inflammatory Biomarkers, Comorbidity, and Neurocognition in Women With Newly Diagnosed Breast Cancer. J Natl Cancer Inst. 2015; 107(8):djv 131.
  • [40]Perssons J, Herlitz A, Engman J, Morell A, Sjölie D, Wikström J et al.. Remembering our origin: Gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Behav Brain Res. 2013; 256(8):219-228.
  • [41]Sidhu MK, Stretton J, Winston GP, Symms M, Thompson PJ, Koepp MJ et al.. Memory fMRI predicts verbal memory decline after anterior temporal lobe resection: Gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Neurology. 2015; 84(15):1512-1519.
  • [42]Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG et al.. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009; 10(11):1037-44.
  文献评价指标  
  下载次数:21次 浏览次数:12次