期刊论文详细信息
Radiation Oncology
Interventional therapy for human breast cancer in nude mice with 131I gelatin microspheres (131I-GMSs) following intratumoral injection
Xiao-Li Chen4  Zhuo Chen5  Lin Li2  Chuan-Qin Xia1  Jian-Hong Li2  Yu Ma3  Jun-Lin Chi4  Chuan-Chao Li4 
[1] College of Chemistry, Sichuan University, Chengdu (610041), China;Department of Nuclear Medicine and The National Key Discipline of Medical Imaging and Nuclear Medicine, West China Hospital of Sichuan University, Chengdu (610041), China;Department of Thyroid and Breast Surgery, West China Hospital of Sichuan University Chengdu (610041), China;Department of General Surgery, West China Hospital of Sichuan University, Chengdu (610041), China;Regeneration Medicine Research Center, West China Hospital of Sichuan University, Chengdu (610041), China
关键词: Biodistribution;    Treatment outcome;    Intratumoral injection;    Breast neoplasms;    Gelatin microspheres;    131I;   
Others  :  801006
DOI  :  10.1186/1748-717X-9-144
 received in 2014-01-08, accepted in 2014-06-04,  发布年份 2014
PDF
【 摘 要 】

Introduction

The aim of this study was to investigate the effects of 131I gelatin microspheres (131I-GMS) on human breast cancer cells (MCF-7) in nude mice and the biodistribution of 131I-GMSs following intratumoral injections.

Methods

A total of 20 tumor-bearing mice were divided into a treatment group and control group and received intratumoral injections of 2.5 mci 131I-GMSs and nonradioactive GMSs, respectively. Tumor size was measured once per week. Another 16 mice received intratumoral injections of 0.4 mci 131I-GMSs and were subjected to single photon emission computed tomography (SPECT) scans and tissue radioactivity concentration measurements on day 1, 4, 8 and 16 postinjection. The 20 tumor-bearing mice received intratumoral injections of 0.4 mci [131I] sodium iodide solution and were subjected to SPECT scans and intratumoral radioactivity measurements at 1, 6, 24, 48 and 72 h postinjection. The tumors were collected for histological examination.

Results

The average tumor volume in the 131I-GMSs group on post-treatment day 21 decreased to 86.82 ± 63.6%, while it increased to 893.37 ± 158.12% in the control group (P < 0.01 vs. the 131I-GMSs group). 131I-GMSs provided much higher intratumoral retention of radioactivity, resulting in 19.93 ± 5.24% of the injected radioactivity after 16 days, whereas the control group retained only 1.83 ± 0.46% of the injected radioactivity within the tumors at 1 h postinjection.

Conclusions

131I-GMSs suppressed the growth of MCF-7 in nude mice and provided sustained intratumoral radioactivity retention. The results suggest the potential of 131I-GMSs for clinical applications in radiotherapy for breast cancer.

【 授权许可】

   
2014 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708002151890.pdf 2237KB PDF download
Figure 6. 63KB Image download
Figure 5. 339KB Image download
Figure 4. 57KB Image download
Figure 3. 40KB Image download
Figure 2. 60KB Image download
Figure 1. 106KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Zweit J: Radionuclides and carrier molecules for therapy. Phys Med Biol 1996, 41(10):1905-1914.
  • [2]Ibrahim SM, Lewandowski RJ, Sato KT, Gates VL, Kulik L, Mulcahy MF, Ryu RK, Omary RA, Salem R: Radioembolization for the treatment of unresectable hepatocellular carcinoma: a clinical review. World J Gastroenterol 2008, 14(11):1664-1669.
  • [3]Salem R, Thurston KG: Radioembolization with yttrium-90 microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: part 3: comprehensive literature review and future direction. J Vasc Interv Radiol 2006, 17(10):1571-1593.
  • [4]Liang L, Huang J, Yin X, Lu M, Rao G, Ren Z: Hepatic arterial infusion of 32P-radionuclide microspheres for radiation therapy of hepatocellular carcinoma. [Article in Chinese]. Zhonghua Wai Ke Za Zhi 1999, 37(12):743-746.
  • [5]Gao W, Liu L, Teng GJ, Feng GS, Tong GS, Gao NR: Internal radiotherapy using 32P colloid or microsphere for refractory solid tumors. Ann Nucl Med 2008, 22(8):653-660.
  • [6]Brown RF, Lindesmith LC, Day DE: 166Holmium-containing glass for internal radiotherapy of tumors. Int J Rad Appl Instrum B 1991, 18(7):783-790.
  • [7]Häfeli UO, Roberts WK, Pauer GJ, Kraeft SK, Macklis RM: Stability of biodegradable radioactive rhenium (Re-186 and Re-188) Microspheres after neutron activation. Appl Radiat Isot 2001, 54(6):869-879.
  • [8]Nijsen F, Rook D, Brandt C, Meijer R, Dullens H, Zonnenberg B: Targeting of liver tumor in rats by selective delivery of holmium-166 loaded microspheres: a biodistribution study. Eur J Nucl Med 2001, 28(6):743-749.
  • [9]Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S: Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics 2005, 25(Suppl 1):S41-55.
  • [10]Kulik LM, Carr BI, Mulcahy MF, Lewandowski RJ, Atassi B, Ryu RK, Sato KT, Benson A 3rd, Nemcek AA Jr, Gates VL, Abecassis M, Omary RA, Salem R: Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008, 47:71-81.
  • [11]Mulcahy MF, Lewandowski RJ, Ibrahim SM, Sato KT, Ryu RK, Atassi B: Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer 2009, 115(9):1849-1858.
  • [12]Coldwell DM, Kennedy AS, Nutting CW: Use of yttrium-90 microspheres in the treatment of unresectable hepatic metastases from breast cancer. Int J Radiat Oncol Biol Phys 2007, 69(3):800-804.
  • [13]Kennedy AS, Dezarn WA, McNeillie P, Coldwell D, Nutting C, Carter D: Radio-embolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol 2008, 31(3):271-279.
  • [14]Tian JH, Xu BX, Zhang JM, Dong BW, Liang P, Wang XD: Ultrasound-guided internal radiotherapy using yttrium-90-glass microspheres for liver malignancies. J Nucl Med 1996, 37(6):958-963.
  • [15]Less JR, Skalak TC, Sevick EM, Jain RK: Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 1991, 51(1):265-273.
  • [16]Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ: Planar gamma camera imaging and quantitation of Yttrium-90 bremsstrahlung. J Nucl Med 1994, 35(8):1381-1389.
  • [17]Murthy R, Brown DB, Salem R, Meranze SG, Coldwell DM, Krishnan S: Gastrointestinal complications associated with hepatic arterial Yttrium-90 microsphere therapy. J Vasc Interv Radiol 2007, 18(4):553-561.
  • [18]Carretero C, Munoz-Navas M, Betes M, Angos R, Subtil JC, Fernandez-Urien I: Gastroduodenal injury after radioembolization of hepatic tumors. Am J Gastroenterol 2007, 102(6):1216-1220.
  • [19]Mumper RJ, Ryo UY, Jay M: Neutron-activated holmium-166-poly (L-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumors. J Nucl Med 1991, 32(11):2139-2143.
  • [20]Vente MA, Nijsen JF, de Wit TC, Seppenwoolde JH, Krijger GC, Seevinck PR: Clinical effects of trans-catheter hepatic arterial embolization with holmium-166 poly(L-lactic acid) microspheres in healthy pigs. Eur J Nucl Med Mol Imaging 2008, 35(7):1259-1271.
  • [21]Cohen S, Holloway RC, Matthews C, McFarlane AS: Distribution and elimination of 131 I and 14C-labelled plasma proteins in the rabbit. Biochem J 1956, 62(1):143-154.
  • [22]Campbell RM, Cuthbertson DP, Matthews CM, Mcfarlane AS: Behaviour of 14C- and 131I-labelled plasma proteins in the rat. Int J Appl Radiat Isot 1956, 1(1–2):66-84.
  • [23]Liu YP, Li QS, Huang YR, Liu CX: Tissue distribution and excretion of 125I-lidamycin in mice and rats. World J Gastroenterol 2005, 11(21):3281-3284.
  • [24]Wyszomirska A: Iodine-131 for therapy of thyroid diseases. Physical and biological basis. Nucl Med Rev Cent East Eur 2012, 15(2):120-123.
  • [25]Pant GS, Sharma SK, Bal CS, Kumar R, Rath GK: Radiation dose to family members of hyperthyroidism and thyroid cancer patients treated with 131I. Radiat Prot Dosimetry 2006, 118(1):22-27.
  • [26]Barrington SF, O’Doherty MJ, Kettle AG, Thomson WH, Mountford PJ, Burrell DN: Radiation exposure of the families of outpatients treated with radioiodine (iodine-131) for hyperthyroidism. Eur J Nucl Med 1999, 26(7):686-692.
  • [27]Ma Y, Wan Y, Luo DH, Duan LG, Li L, Xia CQ: Direct in vivo injection of 131I-GMS and its distribution and excretion in rabbit. World J Gastroenterol 2010, 16(17):2120-2128.
  • [28]Ma Y, Li B, Li L, Duan LG, Wei YG, Chen XL: In vivo distribution of (131)I and (125)I dual-labeled gelatin microspheres after implantation into rabbit liver. Cancer Biother Radiopharm 2012, 27(4):267-275.
  • [29]Feuer EJ, Wun LM, Boring CC, Flanders WD, Timmel MJ, Tong T: The lifetime risk of developing breast cancer. J Natl Cancer Inst 1993, 85(11):892-897.
  • [30]Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER: Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 2002, 347(16):1233-1241.
  • [31]Poggi MM, Danforth DN, Sciuto LC, Smith SL, Steinberg SM, Liewehr DJ: Eighteen-yearresults in the treatment of early breast carcinoma with mastectomy versus breast conservation therapy: the National Cancer Institute Randomized Trial. Cancer 2003, 98(4):697-702.
  • [32]Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A: Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 2002, 347(16):1227-1232.
  • [33]Sarrazin D, Lê MG, Arriagada R, Contesso G, Fontaine F, Spielmann M: Ten-year results of a randomized trial comparing a conservative treatment to mastectomy in early breast cancer. Radiother Oncol 1989, 14(3):177-184.
  • [34]Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005, 366(9503):2087-2106.
  • [35]Vinh-Hung V, Verschraegen C: Breast-conserving surgery with or without radiotherapy: pooled-analysis for risks of ipsilateral breast tumor recurrence and mortality. J Natl Cancer Inst 2004, 96(2):115-121.
  • [36]Sanders ME, Scroggins T, Ampil FL, Li BD: Accelerated partial breast irradiation in early-stage breast cancer. J Clin Oncol 2007, 25(8):996-1002.
  • [37]Antonucci JV, Wallace M, Goldstein NS, Kestin L, Chen P, Benitez P: Differences in patterns of failure in patients treated with accelerated partial breast irradiation versus whole-breast irradiation: a matched-pair analysis with 10-year follow-up. Int J Radiat Oncol Biol Phys 2009, 74(2):447-452.
  • [38]Lin R, Tripuraneni P: Radiation therapy in early-stage invasive breast cancer. Indian J Surg Oncol 2011, 2(2):101-111.
  • [39]Njeh CF, Saunders MW, Langton CM: Accelerated Partial Breast Irradiation (APBI): A review of available techniques. Radiat Oncol 2010, 5:90.
  • [40]Polgár C, Fodor J, Major T, Németh G, Lövey K, Orosz Z: Breast-conserving treatment with partial or whole breast irradiation for low-risk invasive breast carcinoma–5-year results of a randomized trial. Int J Radiat Oncol Biol Phys 2007, 69(3):694-702.
  • [41]Johansson B, Karlsson L, Liljegren G, Hardell L, Persliden J: Pulsed dose rate brachytherapy as the sole adjuvant radiotherapy after breast-conserving surgery of T1-T2 breast cancer: first long time results from a clinical study. Radiother Oncol 2009, 90(1):30-35.
  • [42]Polgár C, Major T, Fodor J, Sulyok Z, Somogyi A, Lövey K: Accelerated partial-breast irradiation using high-dose-rate interstitial brachytherapy: 12-year update of a prospective clinical study. Radiother Oncol 2010, 94(3):274-279.
  • [43]Häfeli UO, Casillas S, Dietz DW, Pauer GJ, Rybicki LA, Conzone SD: Hepatic tumor radio-embolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres. Int J Radiat Oncol Biol Phys 1999, 44(1):189-199.
  • [44]Liang HC, Chang WH, Lin KJ, Sung HW: Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies. J Biomed Mater Res A 2003, 65:271-282.
  • [45]Young S, Wong M, Tabata Y, Mikos AG: Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005, 109:256-274.
  • [46]Gunji S, Obama K, Matsui M, Tabata Y, Sakai Y: A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery 2013, 154(5):991-999.
  • [47]Nakase H, Okazaki K, Tabata Y, Ozeki M, Watanabe N, Ohana M, Uose S, Uchida K, Nishi T, Mastuura M, Tamaki H, Itoh T, Kawanami C, Chiba T: New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease. J Pharmacol Exp Ther 2002, 301:59-65.
  • [48]Li M, Liu X, Liu X, Ge B: Calcium phosphate cement with bmp-2-loaded gelatin microspheres enhances bone healing in Osteoporosis. Clin Orthop Relat Res 2010, 468(7):1978-1985.
  • [49]Bult W, Vente MA, Zonnenberg BA, Van Het Schip AD, Nijsen JF: Microsphere radioembolization of liver malignancies: current developments. Q J Nucl Med Mol Imaging 2009, 53(3):325-335.
  • [50]Leung TW, Lau WY, Ho SK, Ward SC, Chow JH, Chan MS: Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys 1995, 33(4):919-924.
  文献评价指标  
  下载次数:21次 浏览次数:10次