| Radiation Oncology | |
| Interventional therapy for human breast cancer in nude mice with 131I gelatin microspheres (131I-GMSs) following intratumoral injection | |
| Xiao-Li Chen4  Zhuo Chen5  Lin Li2  Chuan-Qin Xia1  Jian-Hong Li2  Yu Ma3  Jun-Lin Chi4  Chuan-Chao Li4  | |
| [1] College of Chemistry, Sichuan University, Chengdu (610041), China;Department of Nuclear Medicine and The National Key Discipline of Medical Imaging and Nuclear Medicine, West China Hospital of Sichuan University, Chengdu (610041), China;Department of Thyroid and Breast Surgery, West China Hospital of Sichuan University Chengdu (610041), China;Department of General Surgery, West China Hospital of Sichuan University, Chengdu (610041), China;Regeneration Medicine Research Center, West China Hospital of Sichuan University, Chengdu (610041), China | |
| 关键词: Biodistribution; Treatment outcome; Intratumoral injection; Breast neoplasms; Gelatin microspheres; 131I; | |
| Others : 801006 DOI : 10.1186/1748-717X-9-144 |
|
| received in 2014-01-08, accepted in 2014-06-04, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Introduction
The aim of this study was to investigate the effects of 131I gelatin microspheres (131I-GMS) on human breast cancer cells (MCF-7) in nude mice and the biodistribution of 131I-GMSs following intratumoral injections.
Methods
A total of 20 tumor-bearing mice were divided into a treatment group and control group and received intratumoral injections of 2.5 mci 131I-GMSs and nonradioactive GMSs, respectively. Tumor size was measured once per week. Another 16 mice received intratumoral injections of 0.4 mci 131I-GMSs and were subjected to single photon emission computed tomography (SPECT) scans and tissue radioactivity concentration measurements on day 1, 4, 8 and 16 postinjection. The 20 tumor-bearing mice received intratumoral injections of 0.4 mci [131I] sodium iodide solution and were subjected to SPECT scans and intratumoral radioactivity measurements at 1, 6, 24, 48 and 72 h postinjection. The tumors were collected for histological examination.
Results
The average tumor volume in the 131I-GMSs group on post-treatment day 21 decreased to 86.82 ± 63.6%, while it increased to 893.37 ± 158.12% in the control group (P < 0.01 vs. the 131I-GMSs group). 131I-GMSs provided much higher intratumoral retention of radioactivity, resulting in 19.93 ± 5.24% of the injected radioactivity after 16 days, whereas the control group retained only 1.83 ± 0.46% of the injected radioactivity within the tumors at 1 h postinjection.
Conclusions
131I-GMSs suppressed the growth of MCF-7 in nude mice and provided sustained intratumoral radioactivity retention. The results suggest the potential of 131I-GMSs for clinical applications in radiotherapy for breast cancer.
【 授权许可】
2014 Li et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708002151890.pdf | 2237KB | ||
| Figure 6. | 63KB | Image | |
| Figure 5. | 339KB | Image | |
| Figure 4. | 57KB | Image | |
| Figure 3. | 40KB | Image | |
| Figure 2. | 60KB | Image | |
| Figure 1. | 106KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Zweit J: Radionuclides and carrier molecules for therapy. Phys Med Biol 1996, 41(10):1905-1914.
- [2]Ibrahim SM, Lewandowski RJ, Sato KT, Gates VL, Kulik L, Mulcahy MF, Ryu RK, Omary RA, Salem R: Radioembolization for the treatment of unresectable hepatocellular carcinoma: a clinical review. World J Gastroenterol 2008, 14(11):1664-1669.
- [3]Salem R, Thurston KG: Radioembolization with yttrium-90 microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies: part 3: comprehensive literature review and future direction. J Vasc Interv Radiol 2006, 17(10):1571-1593.
- [4]Liang L, Huang J, Yin X, Lu M, Rao G, Ren Z: Hepatic arterial infusion of 32P-radionuclide microspheres for radiation therapy of hepatocellular carcinoma. [Article in Chinese]. Zhonghua Wai Ke Za Zhi 1999, 37(12):743-746.
- [5]Gao W, Liu L, Teng GJ, Feng GS, Tong GS, Gao NR: Internal radiotherapy using 32P colloid or microsphere for refractory solid tumors. Ann Nucl Med 2008, 22(8):653-660.
- [6]Brown RF, Lindesmith LC, Day DE: 166Holmium-containing glass for internal radiotherapy of tumors. Int J Rad Appl Instrum B 1991, 18(7):783-790.
- [7]Häfeli UO, Roberts WK, Pauer GJ, Kraeft SK, Macklis RM: Stability of biodegradable radioactive rhenium (Re-186 and Re-188) Microspheres after neutron activation. Appl Radiat Isot 2001, 54(6):869-879.
- [8]Nijsen F, Rook D, Brandt C, Meijer R, Dullens H, Zonnenberg B: Targeting of liver tumor in rats by selective delivery of holmium-166 loaded microspheres: a biodistribution study. Eur J Nucl Med 2001, 28(6):743-749.
- [9]Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S: Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics 2005, 25(Suppl 1):S41-55.
- [10]Kulik LM, Carr BI, Mulcahy MF, Lewandowski RJ, Atassi B, Ryu RK, Sato KT, Benson A 3rd, Nemcek AA Jr, Gates VL, Abecassis M, Omary RA, Salem R: Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008, 47:71-81.
- [11]Mulcahy MF, Lewandowski RJ, Ibrahim SM, Sato KT, Ryu RK, Atassi B: Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer 2009, 115(9):1849-1858.
- [12]Coldwell DM, Kennedy AS, Nutting CW: Use of yttrium-90 microspheres in the treatment of unresectable hepatic metastases from breast cancer. Int J Radiat Oncol Biol Phys 2007, 69(3):800-804.
- [13]Kennedy AS, Dezarn WA, McNeillie P, Coldwell D, Nutting C, Carter D: Radio-embolization for unresectable neuroendocrine hepatic metastases using resin 90Y-microspheres: early results in 148 patients. Am J Clin Oncol 2008, 31(3):271-279.
- [14]Tian JH, Xu BX, Zhang JM, Dong BW, Liang P, Wang XD: Ultrasound-guided internal radiotherapy using yttrium-90-glass microspheres for liver malignancies. J Nucl Med 1996, 37(6):958-963.
- [15]Less JR, Skalak TC, Sevick EM, Jain RK: Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 1991, 51(1):265-273.
- [16]Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ: Planar gamma camera imaging and quantitation of Yttrium-90 bremsstrahlung. J Nucl Med 1994, 35(8):1381-1389.
- [17]Murthy R, Brown DB, Salem R, Meranze SG, Coldwell DM, Krishnan S: Gastrointestinal complications associated with hepatic arterial Yttrium-90 microsphere therapy. J Vasc Interv Radiol 2007, 18(4):553-561.
- [18]Carretero C, Munoz-Navas M, Betes M, Angos R, Subtil JC, Fernandez-Urien I: Gastroduodenal injury after radioembolization of hepatic tumors. Am J Gastroenterol 2007, 102(6):1216-1220.
- [19]Mumper RJ, Ryo UY, Jay M: Neutron-activated holmium-166-poly (L-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumors. J Nucl Med 1991, 32(11):2139-2143.
- [20]Vente MA, Nijsen JF, de Wit TC, Seppenwoolde JH, Krijger GC, Seevinck PR: Clinical effects of trans-catheter hepatic arterial embolization with holmium-166 poly(L-lactic acid) microspheres in healthy pigs. Eur J Nucl Med Mol Imaging 2008, 35(7):1259-1271.
- [21]Cohen S, Holloway RC, Matthews C, McFarlane AS: Distribution and elimination of 131 I and 14C-labelled plasma proteins in the rabbit. Biochem J 1956, 62(1):143-154.
- [22]Campbell RM, Cuthbertson DP, Matthews CM, Mcfarlane AS: Behaviour of 14C- and 131I-labelled plasma proteins in the rat. Int J Appl Radiat Isot 1956, 1(1–2):66-84.
- [23]Liu YP, Li QS, Huang YR, Liu CX: Tissue distribution and excretion of 125I-lidamycin in mice and rats. World J Gastroenterol 2005, 11(21):3281-3284.
- [24]Wyszomirska A: Iodine-131 for therapy of thyroid diseases. Physical and biological basis. Nucl Med Rev Cent East Eur 2012, 15(2):120-123.
- [25]Pant GS, Sharma SK, Bal CS, Kumar R, Rath GK: Radiation dose to family members of hyperthyroidism and thyroid cancer patients treated with 131I. Radiat Prot Dosimetry 2006, 118(1):22-27.
- [26]Barrington SF, O’Doherty MJ, Kettle AG, Thomson WH, Mountford PJ, Burrell DN: Radiation exposure of the families of outpatients treated with radioiodine (iodine-131) for hyperthyroidism. Eur J Nucl Med 1999, 26(7):686-692.
- [27]Ma Y, Wan Y, Luo DH, Duan LG, Li L, Xia CQ: Direct in vivo injection of 131I-GMS and its distribution and excretion in rabbit. World J Gastroenterol 2010, 16(17):2120-2128.
- [28]Ma Y, Li B, Li L, Duan LG, Wei YG, Chen XL: In vivo distribution of (131)I and (125)I dual-labeled gelatin microspheres after implantation into rabbit liver. Cancer Biother Radiopharm 2012, 27(4):267-275.
- [29]Feuer EJ, Wun LM, Boring CC, Flanders WD, Timmel MJ, Tong T: The lifetime risk of developing breast cancer. J Natl Cancer Inst 1993, 85(11):892-897.
- [30]Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER: Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 2002, 347(16):1233-1241.
- [31]Poggi MM, Danforth DN, Sciuto LC, Smith SL, Steinberg SM, Liewehr DJ: Eighteen-yearresults in the treatment of early breast carcinoma with mastectomy versus breast conservation therapy: the National Cancer Institute Randomized Trial. Cancer 2003, 98(4):697-702.
- [32]Veronesi U, Cascinelli N, Mariani L, Greco M, Saccozzi R, Luini A: Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 2002, 347(16):1227-1232.
- [33]Sarrazin D, Lê MG, Arriagada R, Contesso G, Fontaine F, Spielmann M: Ten-year results of a randomized trial comparing a conservative treatment to mastectomy in early breast cancer. Radiother Oncol 1989, 14(3):177-184.
- [34]Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E: Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005, 366(9503):2087-2106.
- [35]Vinh-Hung V, Verschraegen C: Breast-conserving surgery with or without radiotherapy: pooled-analysis for risks of ipsilateral breast tumor recurrence and mortality. J Natl Cancer Inst 2004, 96(2):115-121.
- [36]Sanders ME, Scroggins T, Ampil FL, Li BD: Accelerated partial breast irradiation in early-stage breast cancer. J Clin Oncol 2007, 25(8):996-1002.
- [37]Antonucci JV, Wallace M, Goldstein NS, Kestin L, Chen P, Benitez P: Differences in patterns of failure in patients treated with accelerated partial breast irradiation versus whole-breast irradiation: a matched-pair analysis with 10-year follow-up. Int J Radiat Oncol Biol Phys 2009, 74(2):447-452.
- [38]Lin R, Tripuraneni P: Radiation therapy in early-stage invasive breast cancer. Indian J Surg Oncol 2011, 2(2):101-111.
- [39]Njeh CF, Saunders MW, Langton CM: Accelerated Partial Breast Irradiation (APBI): A review of available techniques. Radiat Oncol 2010, 5:90.
- [40]Polgár C, Fodor J, Major T, Németh G, Lövey K, Orosz Z: Breast-conserving treatment with partial or whole breast irradiation for low-risk invasive breast carcinoma–5-year results of a randomized trial. Int J Radiat Oncol Biol Phys 2007, 69(3):694-702.
- [41]Johansson B, Karlsson L, Liljegren G, Hardell L, Persliden J: Pulsed dose rate brachytherapy as the sole adjuvant radiotherapy after breast-conserving surgery of T1-T2 breast cancer: first long time results from a clinical study. Radiother Oncol 2009, 90(1):30-35.
- [42]Polgár C, Major T, Fodor J, Sulyok Z, Somogyi A, Lövey K: Accelerated partial-breast irradiation using high-dose-rate interstitial brachytherapy: 12-year update of a prospective clinical study. Radiother Oncol 2010, 94(3):274-279.
- [43]Häfeli UO, Casillas S, Dietz DW, Pauer GJ, Rybicki LA, Conzone SD: Hepatic tumor radio-embolization in a rat model using radioactive rhenium (186Re/188Re) glass microspheres. Int J Radiat Oncol Biol Phys 1999, 44(1):189-199.
- [44]Liang HC, Chang WH, Lin KJ, Sung HW: Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies. J Biomed Mater Res A 2003, 65:271-282.
- [45]Young S, Wong M, Tabata Y, Mikos AG: Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005, 109:256-274.
- [46]Gunji S, Obama K, Matsui M, Tabata Y, Sakai Y: A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery 2013, 154(5):991-999.
- [47]Nakase H, Okazaki K, Tabata Y, Ozeki M, Watanabe N, Ohana M, Uose S, Uchida K, Nishi T, Mastuura M, Tamaki H, Itoh T, Kawanami C, Chiba T: New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease. J Pharmacol Exp Ther 2002, 301:59-65.
- [48]Li M, Liu X, Liu X, Ge B: Calcium phosphate cement with bmp-2-loaded gelatin microspheres enhances bone healing in Osteoporosis. Clin Orthop Relat Res 2010, 468(7):1978-1985.
- [49]Bult W, Vente MA, Zonnenberg BA, Van Het Schip AD, Nijsen JF: Microsphere radioembolization of liver malignancies: current developments. Q J Nucl Med Mol Imaging 2009, 53(3):325-335.
- [50]Leung TW, Lau WY, Ho SK, Ward SC, Chow JH, Chan MS: Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int J Radiat Oncol Biol Phys 1995, 33(4):919-924.
PDF