期刊论文详细信息
Radiation Oncology
Adequacy of inhale/exhale breathhold CT based ITV margins and image-guided registration for free-breathing pancreas and liver SBRT
Richard Tuli2  Howard Sandler2  Kapil Gupta3  Laith H Jamil3  Simon Lo3  Nicholas Nissen1  Robert Reznik2  Benedick A Fraass2  Wensha Yang2 
[1] Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
关键词: Stereotactic body radiation therapy;    Radiotherapy;    Fiducial;    Liver;    Pancreas;    SBRT;   
Others  :  815104
DOI  :  10.1186/1748-717X-9-11
 received in 2013-04-11, accepted in 2013-12-08,  发布年份 2014
PDF
【 摘 要 】

Purpose

To evaluate use of breath-hold CTs and implanted fiducials for definition of the internal target volume (ITV) margin for upper abdominal stereotactic body radiation therapy (SBRT). To study the statistics of inter- and intra-fractional motion information.

Methods and materials

11 patients treated with SBRT for locally advanced pancreatic cancer (LAPC) or liver cancer were included in the study. Patients underwent fiducial implantation, free-breathing CT and breath-hold CTs at end inhalation/exhalation. All patients were planned and treated with SBRT using volumetric modulated arc therapy (VMAT). Two margin strategies were studied: Strategy I uses PTV = ITV + 3 mm; Strategy II uses PTV = GTV + 1.5 cm. Both CBCT and kV orthogonal images were taken and analyzed for setup before patient treatments. Tumor motion statistics based on skeletal registration and on fiducial registration were analyzed by fitting to Gaussian functions.

Results

All 11 patients met SBRT planning dose constraints using strategy I. Average ITV margins for the 11 patients were 2 mm RL, 6 mm AP, and 6 mm SI. Skeletal registration resulted in high probability (RL = 69%, AP = 4.6%, SI = 39%) that part of the tumor will be outside the ITV. With the 3 mm ITV expansion (Strategy 1), the probability reduced to RL 32%, AP 0.3%, SI 20% for skeletal registration; and RL 1.2%, AP 0%, SI 7% for fiducial registration. All 7 pancreatic patients and 2 liver patients failed to meet SBRT dose constraints using strategy II. The liver dose was increased by 36% for the other 2 liver patients that met the SBRT dose constraints with strategy II.

Conclusions

Image guidance matching to skeletal anatomy is inadequate for SBRT positioning in the upper abdomen and usage of fiducials is highly recommended. Even with fiducial implantation and definition of an ITV, a minimal 3 mm planning margin around the ITV is needed to accommodate intra-fractional uncertainties.

【 授权许可】

   
2014 Yang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710054423736.pdf 2778KB PDF download
Figure 5. 33KB Image download
Figure 4. 44KB Image download
Figure 3. 48KB Image download
Figure 2. 77KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Tward DJ, Siewerdsen JH, Daly MJ, et al.: Soft-tissue detectability in cone-beam CT: evaluation by 2AFC tests in relation to physical performance metrics. Med Phys 2007, 34(11):4459-4471.
  • [2]Whitfield G, Jain P, Green M, et al.: Quantifying motion for pancreatic radiotherapy margin calculation. Radiother Oncol 2012, 103(3):360-366.
  • [3]Haripotepornkul NH, Nath SK, Scanderbeg D, et al.: Evaluation of intra- and inter-fraction movement of the cervix during intensity modulated radiation therapy. Radiother Oncol 2011, 98(3):347-351.
  • [4]Katz AW, Carey-Sampson M, Muhs AG, et al.: Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. Int J Radiat Oncol Biol Phys 2007, 67(3):793-798.
  • [5]Scorsetti M, Bignardi M: Conformal and stereotactic radiotherapy in hepatocellular carcinoma. Ann Ital Chir 2008, 79(2):107-110.
  • [6]Pishvaian AC, Collins B, Gagnon G, et al.: EUS-guided fiducial placement for CyberKnife radiotherapy of mediastinal and abdominal malignancies. Gastrointest Endosc 2006, 64(3):412-417.
  • [7]Balter JM, Brock KK, Lam KL, et al.: Evaluating the influence of setup uncertainties on treatment planning for focal liver tumors. Int J Radiat Oncol Biol Phys 2005, 63(2):610-614.
  • [8]Kothary N, Heit JJ, Louie JD, et al.: Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol 2009, 20(2):235-239.
  • [9]Park WG, Yan BM, Schellenberg D, et al.: EUS-guided gold fiducial insertion for image-guided radiation therapy of pancreatic cancer: 50 successful cases without fluoroscopy. Gastrointest Endosc 2010, 71(3):513-518.
  • [10]Varadarajulu S, Trevino JM, Shen S, Jacob R: The use of endoscopic ultrasound-guided gold markers in image-guided radiation therapy of pancreatic cancers: a case series. Endoscopy 2010, 42(5):423-425.
  • [11]Gates LL, Gladstone DJ, Kasibhatla MS, et al.: Stability of serrated gold coil markers in prostate localization. J Appl Clin Med Phys 2011, 12(3):3453.
  • [12]Huguet F, Goodman KA, Azria D, et al.: Radiotherapy technical considerations in the management of locally advanced pancreatic cancer: American-French consensus recommendations. Int J Radiat Oncol Biol Phys 2012, 83(5):1355-1364.
  • [13]Shen Y, Zhang H, Wang J, et al.: Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control. Radiat Oncol 2010, 5:19. BioMed Central Full Text
  • [14]Scorsetti M, Bignardi M, Alongi F, et al.: Stereotactic body radiation therapy for abdominal targets using volumetric intensity modulated arc therapy with RapidArc: feasibility and clinical preliminary results. Acta Oncol 2011, 50(4):528-538.
  • [15]Koong A, Herman J, Goodman K, et al.: Phase II Multi-institutional Study to Evaluate Gemcitabine and fractionated Stereotactic Radiotherapy for Unresectable Pancreatic Adenocarcinom. 2011.
  • [16]Ge J, Santanam L, Noel C, Parikh PJ: Planning 4-dimensional computed tomography (4DCT) cannot adequately represent daily intrafractional motion of abdominal tumors. Int J Radiat Oncol Biol Phys 2013, 85(4):999-1005.
  • [17]Tai A, Liang Z, Erickson B, Li XA: Management of respiration-induced motion with 4-dimensional computed tomography (4DCT) for pancreas irradiation. Int J Radiat Oncol Biol Phys 2013, 86(5):908-913.
  • [18]Cai J, Read PW, Sheng K: The effect of respiratory motion variability and tumor size on the accuracy of average intensity projection from four-dimensional computed tomography: an investigation based on dynamic MRI. Med Phys 2008, 35(11):4974-4981.
  • [19]Miquel ME, Blackall JM, Uribe S, et al.: Patient-specific respiratory models using dynamic 3D MRI: preliminary volunteer results. Phys Med 2013, 29(2):214-220.
  • [20]Cai J, McLawhorn R, Read PW, et al.: Effects of breathing variation on gating window internal target volume in respiratory gated radiation therapy. Med Phys 2010, 37(8):3927-3934.
  • [21]Aruga T, Itami J, Aruga M, et al.: Target volume definition for upper abdominal irradiation using CT scans obtained during inhale and exhale phases. Int J Radiat Oncol Biol Phys 2000, 48(2):465-469.
  • [22]Shiinoki T, Shibuya K, Nakamura M, et al.: Interfractional reproducibility in pancreatic position based on four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 2011, 80(5):1567-1572.
  • [23]Mori S, Hara R, Yanagi T, et al.: Four-dimensional measurement of intrafractional respiratory motion of pancreatic tumors using a 256 multi-slice CT scanner. Radiother Oncol 2009, 92(2):231-237.
  • [24]Loehrer PJ, Feng Y, Cardenes H, et al.: Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol 2011, 29(31):4105-4112.
  • [25]Ben-Josef E, Schipper M, Francis IR, et al.: A phase I/II trial of intensity modulated radiation (IMRT) dose escalation with concurrent fixed-dose rate gemcitabine (FDR-G) in patients with unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 2012, 84(5):1166-1171.
  • [26]Perkins CL, El-Reyes B, Simon E, et al.: Single-fraction image-guided extracranial radiosurgery for recurrent and metastatic abdominal and pelvic cancers: short-term local control, metabolic response, and toxicity. J Gastrointest Oncol 2010, 1(1):16-23.
  • [27]Tao C, Yang LX: Improved radiotherapy for primary and secondary liver cancer: stereotactic body radiation therapy. Anticancer Res 2012, 32(2):649-655.
  • [28]Marchant TE, Amer AM, Moore CJ: Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images. Phys Med Biol 2008, 53(4):1087-1098.
  • [29]Chan MK, Kwong DL, Tam E, et al.: Quantifying variability of intrafractional target motion in stereotactic body radiotherapy for lung cancers. J Appl Clin Med Phys 2013, 14(5):4319.
  • [30]Seppenwoolde Y, Wunderink W, Wunderink-van Veen SR, et al.: Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker-tumour distance. Phys Med Biol 2011, 56(17):5445-5468.
  • [31]Khashab MA, Kim KJ, Tryggestad EJ, et al.: Comparative analysis of traditional and coiled fiducials implanted during EUS for pancreatic cancer patients receiving stereotactic body radiation therapy. Gastrointest Endosc 2012, 76(5):962-971.
  文献评价指标  
  下载次数:45次 浏览次数:34次