期刊论文详细信息
Virology Journal
Viruses and neurodegeneration
Nitin K Saksena2  Monica Miranda-Saksena1  Li Zhou2 
[1] HSV Transport Laboratory, Westmead Millennium Institute, Westmead Hospital, Westmead NSW 2145, Sydney, Australia;Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead NSW 2145, Sydney Australia
关键词: Amyotrophic lateral sclerosis;    Multiple sclerosis;    Parkinson’s disease;    Alzheimer’s disease;    Virus;    Neurodegenerative diseases;   
Others  :  1150071
DOI  :  10.1186/1743-422X-10-172
 received in 2012-07-09, accepted in 2013-05-20,  发布年份 2013
PDF
【 摘 要 】

Neurodegenerative diseases (NDs) are chronic degenerative diseases of the central nervous system (CNS), which affect 37 million people worldwide. As the lifespan increases, the NDs are the fourth leading cause of death in the developed countries and becoming increasingly prevalent in developing countries. Despite considerable research, the underlying mechanisms remain poorly understood. Although the large majority of studies do not show support for the involvement of pathogenic aetiology in classical NDs, a number of emerging studies show support for possible association of viruses with classical neurodegenerative diseases in humans. Space does not permit for extensive details to be discussed here on non-viral-induced neurodegenerative diseases in humans, as they are well described in literature.

Viruses induce alterations and degenerations of neurons both directly and indirectly. Their ability to attack the host immune system, regions of nervous tissue implies that they can interfere with the same pathways involved in classical NDs in humans. Supporting this, many similarities between classical NDs and virus-mediated neurodegeneration (non-classical) have been shown at the anatomic, sub-cellular, genomic and proteomic levels suggesting that viruses can explain neurodegenerative disorders mechanistically. The main objective of this review is to provide readers a detailed snapshot of similarities viral and non-viral neurodegenerative diseases share, so that mechanistic pathways of neurodegeneration in human NDs can be clearly understood. Viruses can guide us to unveil these pathways in human NDs. This will further stimulate the birth of new concepts in the biological research, which is needed for gaining deeper insights into the treatment of human NDs and delineate mechanisms underlying neurodegeneration.

【 授权许可】

   
2013 Zhou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405132213119.pdf 350KB PDF download
【 参考文献 】
  • [1]Zhou L, Diefenbach E, Crossett B, Tran SL, Ng T, Rizos H, Rua R, Wang B, Kapur A, Gandhi K, et al.: First evidence of overlaps between HIV-Associated Dementia (HAD) and non-viral neurodegenerative diseases: proteomic analysis of the frontal cortex from HIV+ patients with and without dementia. Mol Neurodegener 2010, 5:27. BioMed Central Full Text
  • [2]Amor S, Puentes F, Baker D, van der Valk P: Inflammation in neurodegenerative diseases. Immunology 2010, 129:154-169.
  • [3]Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ, et al.: Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009, 460:753-757.
  • [4]Mattson MP: Infectious agents and age-related neurodegenerative disorders. Ageing Res Rev 2004, 3:105-120.
  • [5]Bazala E, Renda J: Latent chlamydial infections: the probable cause of a wide spectrum of human diseases. Med Hypotheses 2005, 65:578-584.
  • [6]Megret F, Prehaud C, Lafage M, Moreau P, Rouas-Freiss N, Carosella ED, Lafon M: Modulation of HLA-G and HLA-E expression in human neuronal cells after rabies virus or herpes virus simplex type 1 infections. Hum Immunol 2007, 68:294-302.
  • [7]Ito M, Baker JV, Mock DJ, Goodman AD, Blumberg BM, Shrier DA, Powers JM: Human herpesvirus 6-meningoencephalitis in an HIV patient with progressive multifocal leukoencephalopathy. Acta Neuropathol 2000, 100:337-341.
  • [8]Zivadinov R, Zorzon M, Weinstock-Guttman B, Serafin M, Bosco A, Bratina A, Maggiore C, Grop A, Tommasi MA, Srinivasaraghavan B, Ramanathan M: Epstein-Barr virus is associated with grey matter atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 2009, 80:620-625.
  • [9]Morgenlander JC: A syndrome of concurrent central and peripheral nervous system involvement due to Epstein-Barr virus infection. Muscle Nerve 1996, 19:1037-1039.
  • [10]Bastian FO, Rabson AS, Yee CL, Tralka TS: Herpesvirus hominis: isolation from human trigeminal ganglion. Science 1972, 178:306-307.
  • [11]Wuthrich C, Dang X, Westmoreland S, McKay J, Maheshwari A, Anderson MP, Ropper AH, Viscidi RP, Koralnik IJ: Fulminant JC virus encephalopathy with productive infection of cortical pyramidal neurons. Ann Neurol 2009, 65:742-748.
  • [12]Tomonaga K, Kobayashi T, Ikuta K: The neuropathogenesis of Borna disease virus infection. Nihon Rinsho 2001, 59:1605-1613.
  • [13]Neurological complications of influenza Br Med J 1970, 1:248-249.
  • [14]Sulkava R, Rissanen A, Pyhala R: Post-influenzal encephalitis during the influenza A outbreak in 1979/1980. J Neurol Neurosurg Psychiatry 1981, 44:161-163.
  • [15]Abrahams A: Discussion on Influenza. Proc R Soc Med 1919, 12:97-102.
  • [16]Neustadt RE HVF: The swine flu Affair: decision making on a Slippery disease. Washington: D.C.U.S. Department of Health, Education, and Welfare; 1978.
  • [17]Kasai T, Togashi T, Morishima T: Encephalopathy associated with influenza epidemics. Lancet 2000, 355:1558-1559.
  • [18]Kristensson K: Avian influenza and the brain–comments on the occasion of resurrection of the Spanish flu virus. Brain Res Bull 2006, 68:406-413.
  • [19]Zimmer SM, Burke DS: Historical perspective–Emergence of influenza A (H1N1) viruses. N Engl J Med 2009, 361:279-285.
  • [20]Kapila CC, Kaul S, Kapur SC, Kalayanam TS, Banerjee D: Neurological and hepatic disorders associated with influenza. Br Med J 1958, 2:1311-1314.
  • [21]Stuart-Harris CH: The frontiers of medicine. Lancet 1958, 2:427-430.
  • [22]Liebert UG: Measles virus infections of the central nervous system. Intervirology 1997, 40:176-184.
  • [23]Robinson RL, Shahida S, Madan N, Rao S, Khardori N: Transient parkinsonism in West Nile virus encephalitis. Am J Med 2003, 115:252-253.
  • [24]Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, Sen E, Basu A: Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 2007, 55:483-496.
  • [25]Pranzatelli MR, Mott SH, Pavlakis SG, Conry JA, Tate ED: Clinical spectrum of secondary parkinsonism in childhood: a reversible disorder. Pediatr Neurol 1994, 10:131-140.
  • [26]Cerna F, Mehrad B, Luby JP, Burns D, Fleckenstein JL: St. Louis encephalitis and the substantia nigra: MR imaging evaluation. AJNR Am J Neuroradiol 1999, 20:1281-1283.
  • [27]Nielsen NM, Rostgaard K, Hjalgrim H, Aaby P, Askgaard D: Poliomyelitis and Parkinson disease. JAMA 2002, 287:1650-1651.
  • [28]Horta-Barbosa L, Fuccillo DA, Sever JL: Chronic viral infections of the central nervous system. JAMA 1971, 218:1185-1188.
  • [29]Kamei S, Hersch SM, Kurata T, Takei Y: Coxsackie B antigen in the central nervous system of a patient with fatal acute encephalitis: immunohistochemical studies of formalin-fixed paraffin-embedded tissue. Acta Neuropathol 1990, 80:216-221.
  • [30]Ho M: Enterovirus 71: the virus, its infections and outbreaks. J Microbiol Immunol Infect 2000, 33:205-216.
  • [31]Brew BJ, Gonzalez-Scarano F: HIV-associated dementia: an inconvenient truth. Neurology 2007, 68(5):324-325.
  • [32]Whitley R: Herpesviruses. In Baron’s Medical Microbiology. 4th edition. Edited by Galveston SB. Galveston, USA: The University of Texas Medical Branch; 1996.
  • [33]Murray P, Rosenthal K, Pfaller M: Medical Microbiology. 5th edition. Philadelphia, PA, USA: MOSBY Elsevier; 2005.
  • [34]Bonin-Guillaume S, Zekry D, Giacobini E, Gold G, Michel JP: The economical impact of dementia. Presse Med 2005, 34:35-41.
  • [35]Masters CL, Beyreuther K: Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the Abeta amyloid pathway. Brain 2006, 129:2823-2839.
  • [36]Drachman DA: Aging of the brain, entropy, and Alzheimer disease. Neurology 2006, 67:1340-1352.
  • [37]Yankner BA, Duffy LK, Kirschner DA: Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990, 250:279-282.
  • [38]Chen X, Yan SD: Mitochondrial Abeta: a potential cause of metabolic dysfunction in Alzheimer’s disease. IUBMB Life 2006, 58:686-694.
  • [39]Greig NH, Mattson MP, Perry T, Chan SL, Giordano T, Sambamurti K, Rogers JT, Ovadia H, Lahiri DK: New therapeutic strategies and drug candidates for neurodegenerative diseases: p53 and TNF-alpha inhibitors, and GLP-1 receptor agonists. Ann N Y Acad Sci 2004, 1035:290-315.
  • [40]Itzhaki RF, Wozniak MA: Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within. J Alzheimers Dis 2008, 13:393-405.
  • [41]Letenneur L, Peres K, Fleury H, Garrigue I, Barberger-Gateau P, Helmer C, Orgogozo JM, Gauthier S, Dartigues JF: Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study. PLoS One 2008, 3:e3637.
  • [42]Denaro FJ, Staub P, Colmer J, Freed DM: Coexistence of Alzheimer disease neuropathology with herpes simplex encephalitis. Cell Mol Biol (Noisy-le-Grand) 2003, 49:1233-1240.
  • [43]Wozniak MA, Frost AL, Itzhaki RF: Alzheimer’s disease-specific tau phosphorylation is induced by herpes simplex virus type 1. J Alzheimers Dis 2009, 16:341-350.
  • [44]Carter CJ: Alzheimer’s disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner. Int J Alzheimers Dis 2010, 2010:140539.
  • [45]Satpute-Krishnan P, DeGiorgis JA, Bearer EL: Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of alzheimer’s disease. Aging Cell 2003, 2:305-318.
  • [46]Satpute-Krishnan P, DeGiorgis JA, Conley MP, Jang M, Bearer EL: A peptide zipcode sufficient for anterograde transport within amyloid precursor protein. Proc Natl Acad Sci USA 2006, 103:16532-16537.
  • [47]Cheng SB, Ferland P, Webster P, Bearer EL: Herpes simplex virus dances with amyloid precursor protein while exiting the cell. PLoS One 2011, 6:e17966.
  • [48]Santana S, Recuero M, Bullido MJ, Valdivieso F, Aldudo J: Herpes simplex virus type I induces the accumulation of intracellular beta-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells. Neurobiol Aging 2012, 33(2):430. e419-433
  • [49]Piacentini R, Civitelli L, Ripoli C, Marcocci ME, De Chiara G, Garaci E, Azzena GB, Palamara AT, Grassi C: HSV-1 promotes Ca(2+)-mediated APP phosphorylation and Abeta accumulation in rat cortical neurons. Neurobiol Aging 2011, 32(2323):e2313-2326.
  • [50]De Chiara G, Marcocci ME, Civitelli L, Argnani R, Piacentini R, Ripoli C, Manservigi R, Grassi C, Garaci E, Palamara AT: APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS One 2010, 5:e13989.
  • [51]Wozniak MA, Mee AP, Itzhaki RF: Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol 2009, 217:131-138.
  • [52]Lerchundi R, Neira R, Valdivia S, Vio K, Concha MI, Zambrano A, Otth C: Tau cleavage at D421 by caspase-3 is induced in neurons and astrocytes infected with herpes simplex virus type 1. J Alzheimers Dis 2011, 23:513-520.
  • [53]Hill JM, Zhao Y, Clement C, Neumann DM, Lukiw WJ: HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling. Neuroreport 2009, 20:1500-1505.
  • [54]De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, Matthews PM, Arnold DL: Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001, 58:65-70.
  • [55]Bakshi R, Thompson AJ, Rocca MA, Pelletier D, Dousset V, Barkhof F, Inglese M, Guttmann CR, Horsfield MA, Filippi M: MRI in multiple sclerosis: current status and future prospects. Lancet Neurol 2008, 7:615-625.
  • [56]Pirko I, Johnson AJ, Chen Y, Lindquist DM, Lohrey AK, Ying J, Dunn RS: Brain atrophy correlates with functional outcome in a murine model of multiple sclerosis. Neuroimage 2011, 54:802-806.
  • [57]Lukas C, Minneboo A, de Groot V, Moraal B, Knol DL, Polman CH, Barkhof F, Vrenken H: Early central atrophy rate predicts 5 year clinical outcome in multiple sclerosis. J Neurol Neurosurg Psychiatry 2010, 81:1351-1356.
  • [58]Aboul-Enein F, Krssak M, Hoftberger R, Prayer D, Kristoferitsch W: Reduced NAA-levels in the NAWM of patients with MS is a feature of progression. A study with quantitative magnetic resonance spectroscopy at 3 Tesla. PLoS One 2010, 5:e11625.
  • [59]Schirmer L, Antel JP, Bruck W, Stadelmann C: Axonal loss and neurofilament phosphorylation changes accompany lesion development and clinical progression in multiple sclerosis. Brain Pathol 2011, 21:428-440.
  • [60]Compston A, Coles A: Multiple sclerosis. Lancet 2008, 372:1502-1517.
  • [61]Johnson RT: The virology of demyelinating diseases. Ann Neurol 1994, 36(Suppl):S54-60.
  • [62]Jaworska J, Gravel A, Flamand L: Divergent susceptibilities of human herpesvirus 6 variants to type I interferons. Proc Natl Acad Sci USA 2010, 107:8369-8374.
  • [63]Yoshikawa T, Suga S, Asano Y, Yazaki T, Ozaki T: Neutralizing antibodies to human herpesvirus-6 in healthy individuals. Pediatr Infect Dis J 1990, 9:589-590.
  • [64]Suga S, Yoshikawa T, Asano Y, Yazaki T, Yoshida S: Simultaneous infection with human herpesvirus-6 and measles virus in infants. J Med Virol 1990, 31:306-311.
  • [65]Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, Rose TM, Schultz ER, Bennett JL, Garber RL, Chang M, et al.: Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci USA 1995, 92:7440-7444.
  • [66]Alvarez-Lafuente R, Garcia-Montojo M, De Las Heras V, Dominguez-Mozo MI, Bartolome M, Benito-Martin MS, Arroyo R: Herpesviruses and human endogenous retroviral sequences in the cerebrospinal fluid of multiple sclerosis patients. Mult Scler 2008, 14:595-601.
  • [67]Garcia-Montojo M, De Las Heras V, Dominguez-Mozo M, Bartolome M, Garcia-Martinez MA, Arroyo R, Alvarez-Lafuente R: Human herpesvirus 6 and effectiveness of interferon beta 1b in multiple sclerosis patients. Eur J Neurol 2011, 18:1027-1035.
  • [68]Chapenko S, Millers A, Nora Z, Logina I, Kukaine R, Murovska M: Correlation between HHV-6 reactivation and multiple sclerosis disease activity. J Med Virol 2003, 69:111-117.
  • [69]Soldan SS, Leist TP, Juhng KN, McFarland HF, Jacobson S: Increased lymphoproliferative response to human herpesvirus type 6A variant in multiple sclerosis patients. Ann Neurol 2000, 47:306-313.
  • [70]International Conference on HHV-6 & 7 2006. 2006.
  • [71]International Conference on HHV-6 & 7 2011. 2011.
  • [72]Vandenbroeck K, Alloza I, Swaminathan B, Antiguedad A, Otaegui D, Olascoaga J, Barcina MG, Bartolome M, Fernandez-Arquero M, Delas Heras V, et al.: Validation of IRF5 as multiple sclerosis risk gene: putative role in interferon beta therapy and human herpes virus-6 infection. Genes Immun 2011, 12:40-45.
  • [73]Bronson PG, Caillier S, Ramsay PP, McCauley JL, Zuvich RL, De Jager PL, Rioux JD, Ivinson AJ, Compston A, Hafler DA, et al.: CIITA variation in the presence of HLA-DRB1*1501 increases risk for multiple sclerosis. Hum Mol Genet 2010, 19:2331-2340.
  • [74]Berti R, Brennan MB, Soldan SS, Ohayon JM, Casareto L, McFarland HF, Jacobson S: Increased detection of serum HHV-6 DNA sequences during multiple sclerosis (MS) exacerbations and correlation with parameters of MS disease progression. J Neurovirol 2002, 8:250-256.
  • [75]Fraser KB, Haire M, Millar JH, McCrea S: Increased tendency to spontaneous in-vitro lymphocyte transformation in clinically active multiple sclerosis. Lancet 1979, 2:175-176.
  • [76]Ascherio A, Munger KL: Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 2007, 61:288-299.
  • [77]Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A: Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol 2010, 67:824-830.
  • [78]Santiago O, Gutierrez J, Sorlozano A, de Dios Luna J, Villegas E, Fernandez O: Relation between Epstein-Barr virus and multiple sclerosis: analytic study of scientific production. Eur J Clin Microbiol Infect Dis 2010, 29:857-866.
  • [79]Munger K, Levin L, O’Reilly E, Falk K, Ascherio A: Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult Scler 2011, 17:1185-1193.
  • [80]Stevens SJ, Verschuuren EA, Verkuujlen SA, Van Den Brule AJ, Meijer CJ, Middeldorp JM: Role of Epstein-Barr virus DNA load monitoring in prevention and early detection of post-transplant lymphoproliferative disease. Leuk Lymphoma 2002, 43:831-840.
  • [81]Gulley ML, Tang W: Laboratory assays for Epstein-Barr virus-related disease. J Mol Diagn 2008, 10:279-292.
  • [82]Hadinoto V, Shapiro M, Sun CC, Thorley-Lawson DA: The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog 2009, 5:e1000496.
  • [83]Lassmann H, Niedobitek G, Aloisi F, Middeldorp JM: Epstein-Barr virus in the multiple sclerosis brain: a controversial issue–report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 2011, 134:2772-2786.
  • [84]Burgoon MP, Cohrs RJ, Bennett JL, Anderson SW, Ritchie AM, Cepok S, Hemmer B, Gilden D, Owens GP: Varicella zoster virus is not a disease-relevant antigen in multiple sclerosis. Ann Neurol 2009, 65:474-479.
  • [85]Sargsyan SA, Shearer AJ, Ritchie AM, Burgoon MP, Anderson S, Hemmer B, Stadelmann C, Gattenlohner S, Owens GP, Gilden D, Bennett JL: Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 2010, 74:1127-1135.
  • [86]Serafini B, Muzio L, Rosicarelli B, Aloisi F: Radioactive in situ hybridization for Epstein-Barr virus-encoded small RNA supports presence of Epstein-Barr virus in the multiple sclerosis brain. Brain 2013, 1093:e1-6.
  • [87]Jilek S, Schluep M, Meylan P, Vingerhoets F, Guignard L, Monney A, Kleeberg J, Le Goff G, Pantaleo G, Du Pasquier RA: Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 2008, 131:1712-1721.
  • [88]Pender MP, Csurhes PA, Lenarczyk A, Pfluger CM, Burrows SR: Decreased T cell reactivity to Epstein-Barr virus infected lymphoblastoid cell lines in multiple sclerosis. J Neurol Neurosurg Psychiatry 2009, 80:498-505.
  • [89]Gronen F, Ruprecht K, Weissbrich B, Klinker E, Kroner A, Hofstetter HH, Rieckmann P: Frequency analysis of HLA-B7-restricted Epstein-Barr virus-specific cytotoxic T lymphocytes in patients with multiple sclerosis and healthy controls. J Neuroimmunol 2006, 180:185-192.
  • [90]Cepok S, Zhou D, Srivastava R, Nessler S, Stei S, Bussow K, Sommer N, Hemmer B: Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 2005, 115:1352-1360.
  • [91]Lunemann JD, Edwards N, Muraro PA, Hayashi S, Cohen JI, Munz C, Martin R: Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 2006, 129:1493-1506.
  • [92]Pender MP: Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 2003, 24:584-588.
  • [93]Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K: Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med 2009, 206:2091-2099.
  • [94]Tai AK, O’Reilly EJ, Alroy KA, Simon KC, Munger KL, Huber BT, Ascherio A: Human endogenous retrovirus-K18 Env as a risk factor in multiple sclerosis. Mult Scler 2008, 14:1175-1180.
  • [95]Kang JH, Sheu JJ, Kao S, Lin HC: Increased risk of multiple sclerosis following herpes zoster: a nationwide, population-based study. J Infect Dis 2011, 204:188-192.
  • [96]Ross RT, Cheang M: Geographic similarities between varicella and multiple sclerosis: an hypothesis on the environmental factor of multiple sclerosis. J Clin Epidemiol 1995, 48:731-737.
  • [97]Perez-Cesari C, Saniger MM, Sotelo J: Frequent association of multiple sclerosis with varicella and zoster. Acta Neurol Scand 2005, 112:417-419.
  • [98]Sotelo J, Martinez-Palomo A, Ordonez G, Pineda B: Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis. Ann Neurol 2008, 63:303-311.
  • [99]Pineda BSM: María-Elena Chánez-Cárdenas, José-Manuel Saniger, José-Guadalupe Bañuelos, Norma Hernández-Pedro. Alma Ortiz-Plata & Julio Sotelo: Solid-phase assay for the detection of varicella zoster virus. Future Virology 2009, 4:9.
  • [100]Ordonez G, Martinez-Palomo A, Corona T, Pineda B, Flores-Rivera J, Gonzalez A, Chavez-Munguia B, Sotelo J: Varicella zoster virus in progressive forms of multiple sclerosis. Clin Neurol Neurosurg 2010, 112:653-657.
  • [101]Burgoon MP, Cohrs RJ, Bennett JL, Anderson SW, Ritchie AM, Cepok S, Hemmer B, Gilden D, Owens GP: Varicella zoster virus is not a disease-relevant antigen in multiple sclerosis. Ann Neurol 2009, 65(4):474-479.
  • [102]Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M: Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 2008, 23(Suppl 3):S548-559.
  • [103]Influenza WHO Fact Sheet No. 211. Revised March 2003. Retrieved 22 October 2006. 2006.
  • [104]Maurizi CP: Why was the 1918 influenza pandemic so lethal? The possible role of a neurovirulent neuraminidase. Med Hypotheses 1985, 16:1-5.
  • [105]Poskanzer DC, Schwab RS: Cohort Analysis of Parkinson’s Syndrome: Evidence for a Single Etiology Related to Subclinical Infection About 1920. J Chronic Dis 1963, 16:961-973.
  • [106]Ravenholt RT, Foege WH: 1918 influenza, encephalitis lethargica, parkinsonism. Lancet 1982, 2:860-864.
  • [107]Martyn CN, Osmond C: Parkinson’s disease and the environment in early life. J Neurol Sci 1995, 132:201-206.
  • [108]Martyn CN: Infection in childhood and neurological diseases in adult life. Br Med Bull 1997, 53:24-39.
  • [109]von Economo K: Encepahlitis lethargica. Wien Klin Wochenschr 1917, 30:5.
  • [110]Jang H, Boltz D, Sturm-Ramirez K, Shepherd KR, Jiao Y, Webster R, Smeyne RJ: Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci USA 2009, 106:14063-14068.
  • [111]Klopfleisch R, Werner O, Mundt E, Harder T, Teifke JP: Neurotropism of highly pathogenic avian influenza virus A/chicken/Indonesia/2003 (H5N1) in experimentally infected pigeons (Columbia livia f. domestica). Vet Pathol 2006, 43:463-470.
  • [112]Rigoni M, Shinya K, Toffan A, Milani A, Bettini F, Kawaoka Y, Cattoli G, Capua I: Pneumo- and neurotropism of avian origin Italian highly pathogenic avian influenza H7N1 isolates in experimentally infected mice. Virology 2007, 364:28-35.
  • [113]Tanaka H, Park CH, Ninomiya A, Ozaki H, Takada A, Umemura T, Kida H: Neurotropism of the 1997 Hong Kong H5N1 influenza virus in mice. Vet Microbiol 2003, 95:1-13.
  • [114]Gamboa ET, Wolf A, Yahr MD, Harter DH, Duffy PE, Barden H, Hsu KC: Influenza virus antigen in postencephalitic parkinsonism brain. Detection by immunofluorescence. Arch Neurol 1974, 31:228-232.
  • [115]Rimmelzwaan GF, van Riel D, Baars M, Bestebroer TM, van Amerongen G, Fouchier RA, Osterhaus AD, Kuiken T: Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts. Am J Pathol 2006, 168:176-183. quiz 364
  • [116]Lipatov AS, Krauss S, Guan Y, Peiris M, Rehg JE, Perez DR, Webster RG: Neurovirulence in mice of H5N1 influenza virus genotypes isolated from Hong Kong poultry in 2001. J Virol 2003, 77:3816-3823.
  • [117]Takahashi M, Yamada T, Nakajima S, Nakajima K, Yamamoto T, Okada H: The substantia nigra is a major target for neurovirulent influenza A virus. J Exp Med 1995, 181:2161-2169.
  • [118]Tanimura N, Tsukamoto K, Okamatsu M, Mase M, Imada T, Nakamura K, Kubo M, Yamaguchi S, Irishio W, Hayashi M, et al.: Pathology of fatal highly pathogenic H5N1 avian influenza virus infection in large-billed crows (Corvus macrorhynchos) during the 2004 outbreak in Japan. Vet Pathol 2006, 43:500-509.
  • [119]de Jong MD, Bach VC, Phan TQ, Vo MH, Tran TT, Nguyen BH, Beld M, Le TP, Truong HK, Nguyen VV, et al.: Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med 2005, 352:686-691.
  • [120]Gambotto A, Barratt-Boyes SM, de Jong MD, Neumann G, Kawaoka Y: Human infection with highly pathogenic H5N1 influenza virus. Lancet 2008, 371:1464-1475.
  • [121]Rohn TT, Catlin LW: Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson’s disease brain. PLoS One 2011, 6:e20495.
  • [122]Shinya K, Shimada A, Ito T, Otsuki K, Morita T, Tanaka H, Takada A, Kida H, Umemura T: Avian influenza virus intranasally inoculated infects the central nervous system of mice through the general visceral afferent nerve. Arch Virol 2000, 145:187-195.
  • [123]Reinacher M, Bonin J, Narayan O, Scholtissek C: Pathogenesis of neurovirulent influenza A virus infection in mice. Route of entry of virus into brain determines infection of different populations of cells. Lab Invest 1983, 49:686-692.
  • [124]Zhou L, Rua R, Ng T, Vongrad V, Ho YS, Geczy C, Hsu K, Brew BJ, Saksena NK: Evidence for predilection of macrophage infiltration patterns in the deeper midline and mesial temporal structures of the brain uniquely in patients with HIV-associated dementia. BMC Infect Dis 2009, 9:192. BioMed Central Full Text
  • [125]Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R: HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog 2011, 7:e1002286.
  • [126]Chen L, Liu J, Xu C, Keblesh J, Zang W, Xiong H: HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents. PLoS One 2011, 6:e25994.
  • [127]Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE: HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem 2011, 286:41125-41134.
  • [128]Brew BJ, Crowe SM, Landay A, Cysique LA, Guillemin G: Neurodegeneration and ageing in the HAART era. J Neuroimmune Pharmacol 2009, 4:163-174.
  • [129]Verma A, Berger JR: ALS syndrome in patients with HIV-1 infection. J Neurol Sci 2006, 240:59-64.
  • [130]Maruszak H, Brew BJ, Giovannoni G, Gold J: Could antiretroviral drugs be effective in multiple sclerosis? A case report. Eur J Neurol 2011, 18:e110-111.
  • [131]Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, Yolken RH: Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 2000, 5:142-149.
  • [132]Ovadi J, Orosz F, Hollan S: Functional aspects of cellular microcompartmentation in the development of neurodegeneration: mutation induced aberrant protein-protein associations. Mol Cell Biochem 2004, 256–257:83-93.
  • [133]Sultana R, Boyd-Kimball D, Cai J, Pierce WM, Klein JB, Merchant M, Butterfield DA: Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J Alzheimers Dis 2007, 11:153-164.
  • [134]Manczak M, Park BS, Jung Y, Reddy PH: Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med 2004, 5:147-162.
  • [135]Gunnersen D, Haley B: Detection of glutamine synthetase in the cerebrospinal fluid of Alzheimer diseased patients: a potential diagnostic biochemical marker. Proc Natl Acad Sci USA 1992, 89:11949-11953.
  • [136]Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE: Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 1983, 80:2752-2756.
  • [137]Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA: Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 2006, 27:1564-1576.
  • [138]Balcz B, Kirchner L, Cairns N, Fountoulakis M, Lubec G: Increased brain protein levels of carbonyl reductase and alcohol dehydrogenase in Down syndrome and Alzheimer’s disease. J Neural Transm 2001, 61:193-201.
  • [139]Kim SH, Fountoulakis M, Cairns NJ, Lubec G: Human brain nucleoside diphosphate kinase activity is decreased in Alzheimer’s disease and Down syndrome. Biochem Biophys Res Commun 2002, 296:970-975.
  • [140]Aksenov MY, Aksenova MV, Payne RM, Smith CD, Markesbery WR, Carney JM: The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenerative disorders: Alzheimer’s and Pick’s disease. Exp Neurol 1997, 146:458-465.
  • [141]Lovell MA, Xie C, Markesbery WR: Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology 1998, 51:1562-1566.
  • [142]Menegon A, Board PG, Blackburn AC, Mellick GD, Le Couteur DG: Parkinson’s disease, pesticides, and glutathione transferase polymorphisms. Lancet 1998, 352:1344-1346.
  • [143]Cheon MS, Fountoulakis M, Cairns NJ, Dierssen M, Herkner K, Lubec G: Decreased protein levels of stathmin in adult brains with Down syndrome and Alzheimer’s disease. J Neural Transm Suppl 2001, 61:281-288.
  • [144]Jin LW, Masliah E, Iimoto D, Deteresa R, Mallory M, Sundsmo M, Mori N, Sobel A, Saitoh T: Neurofibrillary tangle-associated alteration of stathmin in Alzheimer’s disease. Neurobiol Aging 1996, 17:331-341.
  • [145]Zhou D, Noviello C, D’Ambrosio C, Scaloni A, D’Adamio L: Growth factor receptor-bound protein 2 interaction with the tyrosine-phosphorylated tail of amyloid beta precursor protein is mediated by its Src homology 2 domain. J Biol Chem 2004, 279:25374-25380.
  • [146]Giambarella U, Yamatsuji T, Okamoto T, Matsui T, Ikezu T, Murayama Y, Levine MA, Katz A, Gautam N, Nishimoto I: G protein betagamma complex-mediated apoptosis by familial Alzheimer’s disease mutant of APP. EMBO J 1997, 16:4897-4907.
  • [147]Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA: Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 2002, 33:562-571.
  • [148]Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T: Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000, 25:302-305.
  • [149]Yoo BC, Kim SH, Cairns N, Fountoulakis M, Lubec G: Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 2001, 280:249-258.
  • [150]Valente L, Tiranti V, Marsano RM, Malfatti E, Fernandez-Vizarra E, Donnini C, Mereghetti P, De Gioia L, Burlina A, Castellan C, et al.: Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet 2007, 80:44-58.
  • [151]Shimohama S, Chachin M, Taniguchi T, Hidaka H, Kimura J: Changes of neurocalcin, a calcium-binding protein, in the brain of patients with Alzheimer’s disease. Brain Res 1996, 716:233-236.
  • [152]Smine A, Xu X, Nishiyama K, Katada T, Gambetti P, Yadav SP, Wu X, Shi YC, Yasuhara S, Homburger V, Okamoto T: Regulation of brain G-protein go by Alzheimer’s disease gene presenilin-1. J Biol Chem 1998, 273:16281-16288.
  • [153]Sowell RA, Owen JB, Butterfield DA: Proteomics in animal models of Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 2009, 8:1-17.
  • [154]Lovell MA, Xie C, Gabbita SP, Markesbery WR: Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer’s disease brain. Free Radic Biol Med 2000, 28:418-427.
  • [155]Zhou L, Pupo GM, Gupta P, Liu B, Tran SL, Rahme R, Wang B, Rua R, Rizos H, Carroll A, Cairns MJ, Saksena NK: A parallel genome-wide mRNA and microRNA profiling of the frontal cortex of HIV patients with and without HIV-associated dementia shows the role of axon guidance and downstream pathways in HIV-mediated neurodegeneration. BMC Genomics 2012, 13:677. BioMed Central Full Text
  • [156]Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, Lin DY, Duan J, Ophoff RA, Andreassen OA, et al.: Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011, 43:969-976.
  • [157]Noorbakhsh F, Ellestad KK, Maingat F, Warren KG, Han MH, Steinman L, Baker GB, Power C: Impaired neurosteroid synthesis in multiple sclerosis. Brain 2011, 134:2703-2721.
  • [158]Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng ZQ, Luo Y, Peng J, Bordey A, et al.: MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 2010, 28:1060-1070.
  • [159]Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK: Altered microRNA regulation in Huntington’s disease models. Exp Neurol 2011, 227:172-179.
  • [160]Liang C, Zhu H, Xu Y, Huang L, Ma C, Deng W, Liu Y, Qin C: MicroRNA-153 Negatively Regulates the Expression of Amyloid Precursor Protein and Amyloid Precursor-like Protein 2. Brain Res 2012, 1455:103-113.
  • [161]Doxakis E: Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem 2010, 285:12726-12734.
  • [162]Matsuzaki T, Nakagawa M, Nagai M, Nobuhara Y, Usuku K, Higuchi I, Takahashi K, Moritoyo T, Arimura K, Izumo S, et al.: HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP) with amyotrophic lateral sclerosis-like manifestations. J Neurovirol 2000, 6:544-548.
  • [163]MacGowan DJ, Scelsa SN, Waldron M: An ALS-like syndrome with new HIV infection and complete response to antiretroviral therapy. Neurology 2001, 57:1094-1097.
  • [164]Westarp ME, Ferrante P, Perron H, Bartmann P, Kornhuber HH: Sporadic ALS/MND: a global neurodegeneration with retroviral involvement? J Neurol Sci 1995, 129(Suppl):145-147.
  • [165]Ferrante P, Westarp ME, Mancuso R, Puricelli S, Westarp MP, Mini M, Caputo D, Zuffolato MR: HTLV tax-rex DNA and antibodies in idiopathic amyotrophic lateral sclerosis. J Neurol Sci 1995, 129(Suppl):140-144.
  • [166]Silva MT, Leite AC, Alamy AH, Chimelli L, Andrada-Serpa MJ, Araujo AQ: ALS syndrome in HTLV-I infection. Neurology 2005, 65:1332-1333.
  • [167]Zachary JF, Baszler TV, French RA, Kelley KW: Mouse Moloney leukemia virus infects microglia but not neurons even though it induces motor neuron disease. Mol Psychiatry 1997, 2:104-106.
  • [168]Steele AJ, Al-Chalabi A, Ferrante K, Cudkowicz ME, Brown RH Jr, Garson JA: Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives. Neurology 2005, 64:454-458.
  • [169]MacGowan DJ, Scelsa SN, Imperato TE, Liu KN, Baron P, Polsky B: A controlled study of reverse transcriptase in serum and CSF of HIV-negative patients with ALS. Neurology 2007, 68:1944-1946.
  • [170]McCormick AL, Brown RH Jr, Cudkowicz ME, Al-Chalabi A, Garson JA: Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate. Neurology 2008, 70:278-283.
  • [171]Douville R, Liu J, Rothstein J, Nath A: Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 2011, 69:141-151.
  • [172]Yang WX, Terasaki T, Shiroki K, Ohka S, Aoki J, Tanabe S, Nomura T, Terada E, Sugiyama Y, Nomoto A: Efficient delivery of circulating poliovirus to the central nervous system independently of poliovirus receptor. Virology 1997, 229:421-428.
  • [173]Aronsson F, Robertson B, Ljunggren HG, Kristensson K: Invasion and persistence of the neuroadapted influenza virus A/WSN/33 in the mouse olfactory system. Viral Immunol 2003, 16:415-423.
  • [174]Iwasaki T, Itamura S, Nishimura H, Sato Y, Tashiro M, Hashikawa T, Kurata T: Productive infection in the murine central nervous system with avian influenza virus A (H5N1) after intranasal inoculation. Acta Neuropathol 2004, 108:485-492.
  • [175]Matsuda K, Park CH, Sunden Y, Kimura T, Ochiai K, Kida H, Umemura T: The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet Pathol 2004, 41:101-107.
  • [176]Harberts E, Yao K, Wohler JE, Maric D, Ohayon J, Henkin R, Jacobson S: Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc Natl Acad Sci USA 2011, 108:13734-13739.
  • [177]Kobiler D, Lustig S, Shapira S: Blood–brain barrier: drug delivery and brain pathology. New York: Springer Science+Business Media; 2001.
  • [178]Vasto S, Caruso C: Immunity & Ageing: a new journal looking at ageing from an immunological point of view. Immun Ageing 2004, 1:1. BioMed Central Full Text
  • [179]Rivest S: Regulation of innate immune responses in the brain. Nat Rev Immunol 2009, 9:429-439.
  • [180]Pawelec G, Barnett Y, Mariani E, Solana R: Human CD4+ T cell clone longevity in tissue culture: lack of influence of donor age or cell origin. Exp Gerontol 2002, 37:265-269.
  • [181]Crutcher KA, Gendelman HE, Kipnis J, Perez-Polo JR, Perry VH, Popovich PG, Weaver LC: Debate: “is increasing neuroinflammation beneficial for neural repair?”. J Neuroimmune Pharmacol 2006, 1:195-211.
  • [182]Popovich PG, Longbrake EE: Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 2008, 9:481-493.
  • [183]Tansey MG, McCoy MK, Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007, 208:1-25.
  • [184]Schmid CD, Melchior B, Masek K, Puntambekar SS, Danielson PE, Lo DD, Sutcliffe JG, Carson MJ: Differential gene expression in LPS/IFNgamma activated microglia and macrophages: in vitro versus in vivo. J Neurochem 2009, 109(Suppl 1):117-125.
  • [185]Block ML, Hong JS: Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005, 76:77-98.
  • [186]McGeer EG, McGeer PL: The role of anti-inflammatory agents in Parkinson’s disease. CNS Drugs 2007, 21:789-797.
  • [187]Nagatsu T, Sawada M: Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol 2006, 26:781-802.
  • [188]Mrak RE, Griffin WS: Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 2005, 26:349-354.
  • [189]Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, et al.: Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 2007, 13:1359-1362.
  • [190]Vlad SC, Miller DR, Kowall NW, Felson DT: Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 2008, 70:1672-1677.
  • [191]Henkel JS, Engelhardt JI, Siklos L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR, Appel SH: Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 2004, 55:221-235.
  • [192]Kawamata T, Akiyama H, Yamada T, McGeer PL: Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol 1992, 140:691-707.
  • [193]Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, Leigh PN, Banati RB: Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C] (R)-PK11195 positron emission tomography study. Neurobiol Dis 2004, 15:601-609.
  • [194]Gerhard A, Trender-Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ: In vivo imaging of microglial activation with [11C](R)-PK11195 PET in progressive supranuclear palsy. Mov Disord 2006, 21:89-93.
  • [195]Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK: Role of microglia in central nervous system infections. Clin Microbiol Rev 2004, 17:942-964. table of contents
  • [196]Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T: Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 2003, 100:8514-8519.
  • [197]Fassbender K, Walter S, Kuhl S, Landmann R, Ishii K, Bertsch T, Stalder AK, Muehlhauser F, Liu Y, Ulmer AJ, et al.: The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J 2004, 18:203-205.
  • [198]Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, et al.: Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 2009, 119:182-192.
  • [199]Larbi A, Pawelec G, Witkowski JM, Schipper HM, Derhovanessian E, Goldeck D, Fulop T: Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. J Alzheimers Dis 2009, 17:91-103.
  • [200]Mantovani S, Garbelli S, Pasini A, Alimonti D, Perotti C, Melazzini M, Bendotti C, Mora G: Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J Neuroimmunol 2009, 210:73-79.
  • [201]Ankeny DP, Popovich PG: Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 2009, 158:1112-1121.
  • [202]Huizinga R, Hintzen RQ, Assink K, van Meurs M, Amor S: T-cell responses to neurofilament light protein are part of the normal immune repertoire. Int Immunol 2009, 21:433-441.
  • [203]van Noort JM, van Sechel AC, Bajramovic JJ, el Ouagmiri M, Polman CH, Lassmann H, Ravid R: The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 1995, 375:798-801.
  • [204]Muller N, Riedel M, Gruber R, Ackenheil M, Schwarz MJ: The immune system and schizophrenia. An integrative view. Ann N Y Acad Sci 2000, 917:456-467.
  • [205]Costa E, Dong E, Grayson DR, Guidotti A, Ruzicka W, Veldic M: Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics 2007, 2:29-36.
  • [206]Kawasaki H, Iwamuro S: Potential roles of histones in host defense as antimicrobial agents. Infect Disord Drug Targets 2008, 8:195-205.
  • [207]Fellerhoff B, Laumbacher B, Mueller N, Gu S, Wank R: Associations between Chlamydophila infections, schizophrenia and risk of HLA-A10. Mol Psychiatry 2007, 12:264-272.
  • [208]Zuckerman L, Weiner I: Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res 2005, 39:311-323.
  • [209]Wu JQ, Dwyer DE, Dyer WB, Yang YH, Wang B, Saksena NK: Genome-wide analysis of primary CD4+ and CD8+ T cell transcriptomes shows evidence for a network of enriched pathways associated with HIV disease. Retrovirology 2011, 8:18. BioMed Central Full Text
  • [210]Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, Harley CB, Villeponteau B, West MD, Giorgi JV: Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 1996, 10:F17-22.
  • [211]Wolthers KC, Bea G, Wisman A, Otto SA, de Roda Husman AM, Schaft N, de Wolf F, Goudsmit J, Coutinho RA, van der Zee AG, et al.: T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 1996, 274:1543-1547.
  • [212]Appay V, Almeida JR, Sauce D, Autran B, Papagno L: Accelerated immune senescence and HIV-1 infection. Exp Gerontol 2007, 42:432-437.
  • [213]Hearps AC, Angelovich TA, Jaworowski A, Mills J, Landay AL, Crowe SM: HIV infection and aging of the innate immune system. Sex Health 2011, 8:453-464.
  • [214]Ockner R: Integration of Metabolism, Energetics, and Signal Transduction. New York: Kluwer Academic/Plenum Publishers; 2004.
  • [215]Maynard ND, Gutschow MV, Birch EW, Covert MW: The virus as metabolic engineer. Biotechnol J 2010, 5:686-694.
  • [216]Taylor MP, Koyuncu OO, Enquist LW: Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol 2011, 9:427-439.
  文献评价指标  
  下载次数:3次 浏览次数:17次