期刊论文详细信息
Respiratory Research
Nicotine exposure during differentiation causes inhibition of N-myc expression
Diane L Carlisle2  Carlos A Castro1  Vonya M Eisinger1  Jill Brekosky1  Tia N Kinney1  Laura M Wakefield2  Becki M Campanaro2  Ahmi Ben-Yehudah1 
[1] Pittsburgh Development Center, Magee Womens Research Institute and Foundation, Pittsburgh, PA 15213, USA;Department of Neurological Surgery, University of Pittsburgh, A505 Scaife Hall, 1550 Terrace Street, Pittsburgh, PA 15213, USA
关键词: Cell cycle;    Nicotine;    Lung development;    Directed differentiation;    Embryonic stem cells;   
Others  :  792403
DOI  :  10.1186/1465-9921-14-119
 received in 2013-01-25, accepted in 2013-10-11,  发布年份 2013
PDF
【 摘 要 】

Background

The ability of chemicals to disrupt neonatal development can be studied using embryonic stem cells (ESC). One such chemical is nicotine. Prenatal nicotine exposure is known to affect postnatal lung function, although the mechanisms by which it has this effect are not clear. Since fibroblasts are a critical component of the developing lung, providing structure and secreting paracrine factors that are essential to epithelialization, this study focuses on the differentiation of ESC into fibroblasts using a directed differentiation protocol.

Methods

Fibroblasts obtained from non-human primate ESC (nhpESC) differentiation were analyzed by immunohistochemistry, immunostaining, Affymetrix gene expression array, qPCR, and immunoblotting.

Results

Results of these analyses demonstrated that although nhpESCs differentiate into fibroblasts in the presence of nicotine and appear normal by some measures, including H&E and SMA staining, they have an altered gene expression profile. Network analysis of expression changes demonstrated an over-representation of cell-cycle related genes with downregulation of N-myc as a central regulator in the pathway. Further investigation demonstrated that cells differentiated in the presence of nicotine had decreased N-myc mRNA and protein expression and longer doubling times, a biological effect consistent with downregulation of N-myc.

Conclusions

This study is the first to use primate ESC to demonstrate that nicotine can affect cellular differentiation from pluripotency into fibroblasts, and in particular, mediate N-myc expression in differentiating ESCs. Given the crucial role of fibroblasts throughout the body, this has important implications for the effect of cigarette smoke exposure on human development not only in the lung, but in organogenesis in general.

【 授权许可】

   
2013 Ben-Yehudah et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705030918116.pdf 3574KB PDF download
Figure 8. 65KB Image download
Figure 7. 55KB Image download
Figure 6. 77KB Image download
Figure 5. 66KB Image download
Figure 4. 74KB Image download
Figure 3. 63KB Image download
Figure 2. 50KB Image download
Figure 1. 92KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Luck W, Nau H, Hansen R, Steldinger R: Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers. Dev Pharmacol Ther 1985, 8:384-395.
  • [2]Pastrakuljic A, Schwartz R, Simone C, Derewlany LO, Knie B, Koren G: Transplacental transfer and biotransformation studies of nicotine in the human placental cotyledon perfused in vitro. Life Sci 1998, 63:2333-2342.
  • [3]Sekhon HS, Jia Y, Raab R, Kuryatov A, Pankow JF, Whitsett JA, Lindstrom J, Spindel ER: Prenatal nicotine increases pulmonary alpha7 nicotinic receptor expression and alters fetal lung development in monkeys. J Clin Invest 1999, 103:637-647.
  • [4]Sekhon HS, Keller JA, Proskocil BJ, Martin EL, Spindel ER: Maternal nicotine exposure upregulates collagen gene expression in fetal monkey lung. Association with alpha7 nicotinic acetylcholine receptors. Am J Respir Cell Mol Biol 2002, 26:31-41.
  • [5]Sekhon HS, Proskocil BJ, Clark JA, Spindel ER: Prenatal nicotine exposure increases connective tissue expression in foetal monkey pulmonary vessels. Eur Respir J 2004, 23:906-915.
  • [6]Yamanaka S, Li J, Kania G, Elliott S, Wersto RP, Van Eyk J, Wobus AM, Boheler KR: Pluripotency of embryonic stem cells. Cell Tissue Res 2008, 331:5-22.
  • [7]Kuske B, Pulyanina PY, zur Nieden NI: Embryonic stem cell test: stem cell use in predicting developmental cardiotoxicity and osteotoxicity. Methods Mol Biol 2012, 889:147-179.
  • [8]Hoelting L, Scheinhardt B, Bondarenko O, Schildknecht S, Kapitza M, Tanavde V, Tan B, Lee QY, Mecking S, Leist M, Kadereit S: A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Arch Toxicol 2013, 87(4):721-733. doi: 10.1007/s00204-012-0984-2. Epub 2012 Dec 2. PubMed PMID: 23203475; PubMed Central PMCID: PMC3604581
  • [9]Kadereit S, Zimmer B, van Thriel C, Hengstler JG, Leist M: Compound selection for in vitro modeling of developmental neurotoxicity. Front Biosci 2012, 17:2442-2460.
  • [10]Krug AK, Kolde R, Gaspar JA, Rempel E, Balmer NV, Meganathan K, Vojnits K, Baquie M, Waldmann T, Ensenat-Waser R, et al.: Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 2013, 87:123-143.
  • [11]Keller G: Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005, 19:1129-1155.
  • [12]Navara CS, Redinger C, Mich-Basso J, Oliver S, Ben-Yehudah A, Castro C, Simerly C: Derivation and characterization of nonhuman primate embryonic stem cells. Curr Protoc Stem Cell Biol 2007., Chapter 1Unit 1A 1
  • [13]Muller T, Fleischmann G, Eildermann K, Matz-Rensing K, Horn PA, Sasaki E, Behr R: A novel embryonic stem cell line derived from the common marmoset monkey (Callithrix jacchus) exhibiting germ cell-like characteristics. Hum Reprod 2009, 24:1359-1372.
  • [14]Shimozawa N, Nakamura S, Takahashi I, Hatori M, Sankai T: Characterization of a novel embryonic stem cell line from an ICSI-derived blastocyst in the African green monkey. Reproduction 2010, 139:565-573.
  • [15]Mitalipov S, Kuo HC, Byrne J, Clepper L, Meisner L, Johnson J, Zeier R, Wolf D: Isolation and characterization of novel rhesus monkey embryonic stem cell lines. Stem Cells 2006, 24:2177-2186.
  • [16]Suemori H, Tada T, Torii R, Hosoi Y, Kobayashi K, Imahie H, Kondo Y, Iritani A, Nakatsuji N: Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev Dyn 2001, 222:273-279.
  • [17]Simerly CR, Navara CS, Castro CA, Turpin JC, Redinger CJ, Mich-Basso JD, Jacoby ES, Grund KJ, McFarland DA, Oliver SL, Ben-Yehudah A, Carlisle DL, Frost P, Penedo C, Hewitson L, Schatten G: Establishment and characterization of baboon embryonic stem cell lines: an Old World Primate model for regeneration and transplantation research. Stem Cell Res 2009, 2(3):178-187. doi:10.1016/j.scr.2009.02.004. Epub 2009 Feb 21. PubMed PMID: 19393591; PubMed Central PMCID: PMC2974044
  • [18]Marshall VS, Waknitz MA, Thomson JA: Isolation and maintenance of primate embryonic stem cells. Methods Mol Biol 2001, 158:11-18.
  • [19]Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP: Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 1995, 92:7844-7848.
  • [20]Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP: Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 1996, 55:254.
  • [21]Thomson JA, Marshall VS: Primate embryonic stem cells. Curr Top Dev Biol 1998, 38:133.
  • [22]Navara CS, Mich-Basso JD, Redinger CJ, Ben-Yehudah A, Jacoby E, Kovkarova-Naumovski E, Sukhwani M, Orwig K, Kaminski N, Castro CA, et al.: Pedigreed primate embryonic stem cells express homogeneous familial gene profiles. Stem Cells 2007, 25:2695-2704.
  • [23]Ben-Yehudah A, Navara CS, Redinger CJ, Mich-Basso JD, Castro CA, Oliver S, Chensny LJ, Richards TJ, Kaminski N, Schatten G: Pluripotency genes overexpressed in primate embryonic stem cells are localized on homologues of human chromosomes 16, 17, 19, and X. Stem Cell Res 2010, 4:25-37.
  • [24]Klapproth H, Reinheimer T, Metzen J, Munch M, Bittinger F, Kirkpatrick CJ, Hohle KD, Schemann M, Racke K, Wessler I: Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man. Naunyn-Schmiedeberg Archives of Pharmacology 1997, 355:515-523.
  • [25]Wessler I, Kirkpatrick CJ, Racke K: Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther 1998, 77:59-79.
  • [26]Conti_Fine BM, Navaneetham D, Lei S, Maus AD: Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity? Eur J Pharmacol 2000, 393:279-294.
  • [27]Wessler IK, Kirkpatrick CJ: The Non-neuronal cholinergic system: an emerging drug target in the airways. Pulm Pharmacol Ther 2001, 14:423-434.
  • [28]Kirkpatrick CJ, Bittinger F, Unger RE, Kriegsmann J, Kilbinger H, Wessler I: The non-neuronal cholinergic system in the endothelium: evidence and possible pathobiological significance. Jpn J Pharmacol 2001, 85:24-28.
  • [29]Wessler I, Kilbinger H, Bittinger F, Kirkpatrick CJ: The biological role of non-neuronal acetylcholine in plants and humans. Jpn J Pharmacol 2001, 85:2-10.
  • [30]Wessler I, Kilbinger H, Bittinger F, Unger R, Kirkpatrick CJ: The non-neuronal cholinergic system in humans: expression, function and pathophysiology. Life Sci 2003, 72:2055-2061.
  • [31]Grando SA, Kist DA, Qi M, Dahl MV: Human keratinocytes synthesize, secrete, and degrade acetylcholine. J Invest Dermatol 1993, 101:32-36.
  • [32]Grando SA, Horton RM, Pereira EF, Diethelm_Okita BM, George PM, Albuquerque EX, Conti_Fine BM: A nicotinic acetylcholine receptor regulating cell adhesion and motility is expressed in human keratinocytes. J Invest Dermatol 1995, 105:774-781.
  • [33]Tang K, Wu H, Mahata SK, O_Connor DT: A crucial role for the mitogen-activated protein kinase pathway in nicotinic cholinergic signaling to secretory protein transcription in pheochromocytoma cells. Mol Pharmacol 1998, 54:59-69.
  • [34]Carlisle DL, Hopkins TM, Gaither-Davis A, Silhanek MJ, Luketich JD, Christie NA, Siegfried JM: Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts. Respir Res 2004, 5:27. BioMed Central Full Text
  • [35]D’Aiuto L, Robison CS, Gigante M, Nwanegbo E, Shaffer B, Sukhwani M, Castro CA, Chaillet JR: Human IL-12 p40 as a reporter gene for high-throughput screening of engineered mouse embryonic stem cells. BMC Biotechnol 2008, 8:52. BioMed Central Full Text
  • [36]Ben-Yehudah A, Navara CS, Redinger CJ, Mich-Basso JD, Castro CA, Oliver S, Chensny LJ, Richards TJ, Kaminski N, Schatten G: Pluripotency genes overexpressed in primate embryonic stem cells are localized on homologues of human chromosomes 16, 17, 19, and X. Stem Cell Res 2010, 4(1):25-37. doi: 10.1016/j.scr.2009.09.003. Epub 2009 Sep 17. PubMed PMID: 19854689; PubMed Central PMCID: PMC2818202
  • [37]Castro CA, Ben-Yehudah A, Ozolek JA, Mills PH, Redinger CJ, Mich-Basso JD, McFarland DA, Oliver SL, Ahrens ET, Schatten G: Semiquantitative histopathology and 3D magnetic resonance microscopy as collaborative platforms for tissue identification and comparison within teratomas derived from pedigreed primate embryonic stem cells. Stem Cell Res 2010, 5:201-211.
  • [38]Ozolek J, Castro C, Jenkinson W, Chebira A, Kovačević J, Navara C, Sukhwani M, Orwig K, Ben-Yehudah A, Schatten G: Semiquantitative and multiresolution-based histological analysis of germ layer components in teratomas derived from human, non-human primate and mouse embryonic stem cells”. Stem Cell Res: Int Soc for; 2007.
  • [39]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008, 3:1101-1108.
  • [40]Wongtrakool C, Roser-Page S, Rivera HN, Roman J: Nicotine alters lung branching morphogenesis through the alpha7 nicotinic acetylcholine receptor. Am J Physiol Lung Cell Mol Physiol 2007, 293:L611-L618.
  • [41]Hurlin PJ: N-Myc functions in transcription and development. Birth Defects Res C Embryo Today 2005, 75:340-352.
  • [42]Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J: TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001, 3:400-408.
  • [43]Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, Moroy T, Bartek J, Massague J, Hanel F, Eilers M: Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 2001, 3:392-399.
  • [44]Wessler I, Michel-Schmidt R, Dohle E, Kirkpatrick CJ: Release of acetylcholine from murine embryonic stem cells: effect of nicotinic and muscarinic receptors and blockade of organic cation transporter. Life Sci 2012, 91:973-976.
  • [45]Wessler I, Michel-Schmidt R, Brochhausen C, Kirkpatrick CJ: Subcellular distribution of choline acetyltransferase by immunogold electron microscopy in non-neuronal cells: placenta, airways and murine embryonic stem cells. Life Sci 2012, 91:977-980.
  • [46]Wessler I, Michel-Schmidt R, Schmidt H, Kaltwasser S, Unger R, Kirkpatrick CJ: Upregulated acetylcholine synthesis during early differentiation in the embryonic stem cell line CGR8. Neurosci Lett 2013, 547:32-36. doi: 10.1016/j.neulet.2013.04.052. Epub 2013 May 10. PubMed PMID: 23669640
  • [47]Zhang H, Guo D, Wang L, Zhao Y, Cheng Y, Qiao Z: Effect of nicotine on Oct-4 and Rex-1 expression of mouse embryonic stem cells. Reprod Toxicol 2005, 19:473-478.
  • [48]Zdravkovic T, Genbacev O, LaRocque N, McMaster M, Fisher S: Human embryonic stem cells as a model system for studying the effects of smoke exposure on the embryo. Reprod Toxicol 2008, 26:86-93.
  • [49]Ishizuka T, Ozawa A, Goshima H, Watanabe Y: Involvement of nicotinic acetylcholine receptor in the proliferation of mouse induced pluripotent stem cells. Life Sci 2012, 90:637-648.
  • [50]Ishizuka T, Goshima H, Ozawa A, Watanabe Y: Effect of nicotine on the proliferation and differentiation of mouse induced pluripotent stem cells. Curr Med Chem 2012, 19:5164-5169.
  • [51]Armitage AK, Dollery CT, George CF, Houseman TH, Lewis PJ, Turner DM: Absorption and metabolism of nicotine from cigarettes. Br Med J 1975, 4:313-316.
  • [52]Moyer TP, Charlson JR, Enger RJ, Dale LC, Ebbert JO, Schroeder DR, Hurt RD: Simultaneous analysis of nicotine, nicotine metabolites, and tobacco alkaloids in serum or urine by tandem mass spectrometry, with clinically relevant metabolic profiles. Clin Chem 2002, 48:1460-1471.
  • [53]Roman J, Ritzenthaler JD, Gil-Acosta A, Rivera HN, Roser-Page S: Nicotine and fibronectin expression in lung fibroblasts: implications for tobacco-related lung tissue remodeling. FASEB J 2004, 18:1436-1438.
  • [54]Carlisle DL, Liu X, Hopkins TM, Swick MC, Dhir R, Siegfried JM: Nicotine activates cell-signaling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells. Pulm Pharmacol Ther 2007, 20:629-641.
  • [55]West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA: Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 2003, 111(1):81-90. PubMed PMID: 12511591; PubMed Central PMCID: PMC151834
  • [56]Fu XW, Lindstrom J, Spindel ER: Nicotine activates and upregulates nicotinic acetylcholine receptors in bronchial epithelial cells. Am J Respir Cell Mol Biol 2008.
  • [57]Proskocil BJ, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, Spindel ER: Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology 2004, 145:2498-2506.
  • [58]Cattaneo MG, Codignola A, Vicentini LM, Clementi F, Sher E: Nicotine stimulates a serotonergic autocrine loop in human small-cell lung carcinoma. Cancer Res 1993, 53:5566-5568.
  • [59]Chu M, Guo J, Chen CY: Long-term exposure to nicotine, via ras pathway, induces cyclin D1 to stimulate G1 cell cycle transition. J Biol Chem 2005, 280:6369-6379.
  • [60]Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL, Cooke JP: Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 2001, 7:833-839.
  • [61]Maneckjee R, Minna JD: Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. Proc Natl Acad Sci USA 1990, 87:3294-3298.
  • [62]Minna JD: Nicotine exposure and bronchial epithelial cell nicotinic acetylcholine receptor expression in the pathogenesis of lung cancer. J Clin Invest 2003, 111:31-33.
  • [63]West KA JB, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA: Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 2003, 111:81-90.
  • [64]Sawai S, Shimono A, Wakamatsu Y, Palmes C, Hanaoka K, Kondoh H: Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. Development 1993, 117:1445-1455.
  • [65]Sawai S, Shimono A, Hanaoka K, Kondoh H: Embryonic lethality resulting from disruption of both N-myc alleles in mouse zygotes. New Biol 1991, 3:861-869.
  • [66]Okubo T, Knoepfler PS, Eisenman RN, Hogan BL: Nmyc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development 2005, 132:1363-1374.
  • [67]Moens CB, Auerbach AB, Conlon RA, Joyner AL, Rossant J: A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. Genes Dev 1992, 6:691-704.
  • [68]Shu W, Guttentag S, Wang Z, Andl T, Ballard P, Lu MM, Piccolo S, Birchmeier W, Whitsett JA, Millar SE, Morrisey EE: Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol 2005, 283:226-239.
  • [69]Cunningham J, Dockery DW, Gold DR, Speizer FE: Racial differences in the association between maternal smoking during pregnancy and lung function in children. Am J Respir Crit Care Med 1995, 152:565-569.
  • [70]Gilliland FD, Berhane K, Li YF, Rappaport EB, Peters JM: Effects of early onset asthma and in utero exposure to maternal smoking on childhood lung function. Am J Respir Crit Care Med 2003, 167:917-924.
  • [71]Gilliland FD, Berhane K, McConnell R, Gauderman WJ, Vora H, Rappaport EB, Avol E, Peters JM: Maternal smoking during pregnancy, environmental tobacco smoke exposure and childhood lung function. Thorax 2000, 55:271-276.
  • [72]Hanrahan JP, Tager IB, Segal MR, Tosteson TD, Castile RG, Van Vunakis H, Weiss ST, Speizer FE: The effect of maternal smoking during pregnancy on early infant lung function. Am Rev Respir Dis 1992, 145:1129-1135.
  • [73]Hu FB, Persky V, Flay BR, Zelli A, Cooksey J, Richardson J: Prevalence of asthma and wheezing in public schoolchildren: association with maternal smoking during pregnancy. Ann Allergy Asthma Immunol 1997, 79:80-84.
  • [74]Tager IB, Ngo L, Hanrahan JP: Maternal smoking during pregnancy. Effects on lung function during the first 18 months of life. Am J Respir Crit Care Med 1995, 152:977-983.
  • [75]Sekhon HS, Keller JA, Benowitz NL, Spindel ER: Prenatal nicotine exposure alters pulmonary function in newborn rhesus monkeys. Am J Respir Crit Care Med 2001, 164:989-994.
  文献评价指标  
  下载次数:11次 浏览次数:7次