Molecular Neurodegeneration | |
APOE4 enhances age-dependent decline in cognitive function by down-regulating an NMDA receptor pathway in EFAD-Tg mice | |
Xiao-chun Chen2  Mary Jo LaDu3  Yuan-gui Zhu2  Leon M Tai3  Meng Zhou3  Xiao-man Dai2  Manel Ben Aissa3  Kevin P Koster3  Arron M Cole3  Nicole C Collins3  Hui Shen1  Jing Zhang2  Xiao-dong Pan2  De-shan Liu2  | |
[1] Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China;Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China;Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, 60612, IL, USA | |
关键词: Transgenic mice; Signaling pathways; Synaptic proteins; Behavior; Apolipoprotein E; Alzheimer’s disease; | |
Others : 1160778 DOI : 10.1186/s13024-015-0002-2 |
|
received in 2014-11-26, accepted in 2015-01-26, 发布年份 2015 | |
【 摘 要 】
Background
Alzheimer’s disease (AD) causes progressive loss of memory and cognition, exacerbated by APOE4, the greatest genetic risk factor for AD. One proposed mechanism for apolipoprotein E (apoE) effects on cognition is via NMDAR-dependent signaling. APOE genotype-specific effects on this pathway were dissected using EFAD-transgenic (Tg) mice (5xFAD mice, that over-express human amyloid-beta (Aβ) via 5 familial-AD (FAD) mutations, and express human apoE), and 5xFAD/APOE-knockout (KO) mice. Previous data from EFAD-Tg mice demonstrate age-dependent (2-6 months), apoE-specific effects on the development of Aβ pathology. This study tests the hypothesis that apoE4 impairs cognition via modulation of NMDAR-dependent signaling, specifically via a loss of function by comparison of E4FAD mice with 5xFAD/APOE-KO mice, E3FAD and E2FAD mice.
Results
Using female E2FAD, E3FAD, E4FAD and 5xFAD/APOE-KO mice aged 2-, 4-, and 6-months, the Y-maze and Morris water maze behavioral tests were combined with synaptic protein levels as markers of synaptic viability. The results demonstrate a greater age-induced deficit in cognition and reduction in PSD95, drebrin and NMDAR subunits in the E4FAD and 5xFAD/APOE-KO mice compared with E2FAD and E3FAD mice, consistent with an apoE4 loss of function. Interestingly, for NMDAR-mediated signaling, the levels of p-CaMK-II followed this same apoE-specific pattern as cognition, while the levels of p-CREB and BDNF demonstrate an apoE4 toxic gain of function: E2FAD > E3FAD > 5xFAD/APOE-KO > E4FAD.
Conclusion
These findings suggest that compared with E2FAD and E3FAD, E4FAD and 5xFAD/APOE-KO mice exhibit enhanced age-induced reductions in cognition and key synaptic proteins via down-regulation of an NMDAR signaling pathway, consistent with an apoE4 loss of function. However, levels of p-CREB and BDNF, signaling factors common to multiple pathways, suggest a gain of toxic function. Publications in this field present contradictory results as to whether APOE4 imparts a loss or gain of function. As with the results reported herein, the overall effect of APOE4 on a given CNS-specific measure will be the product of multiple overlapping mechanisms. Thus, caution remains critical in determining whether APOE gene inactivation or therapies that correct the loss of positive function related to apoE4, are the appropriate therapeutic response.
【 授权许可】
2015 Liu et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150411040848186.pdf | 3631KB | download | |
Figure 7. | 78KB | Image | download |
Figure 6. | 58KB | Image | download |
Figure 5. | 61KB | Image | download |
Figure 4. | 60KB | Image | download |
Figure 3. | 51KB | Image | download |
Figure 2. | 148KB | Image | download |
Figure 1. | 47KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, et al.: Apolipoprotein E, survival in Alzheimer’s disease patients, and the competing risks of death and Alzheimer’s disease. Neurology 1995, 45:1323-8.
- [2]Roses AD: Apolipoprotein E genotyping in the differential diagnosis, not prediction, of Alzheimer’s disease. Ann Neurol 1995, 38:6-14.
- [3]Kim D, Tsai LH: Bridging physiology and pathology in AD. Cell 2009, 137:997-1000.
- [4]Leduc V, Jasmin-Belanger S, Poirier J: APOE and cholesterol homeostasis in Alzheimer’s disease. Trends Mol Med 2010, 16:469-77.
- [5]Koffie RM, Hashimoto T, Tai HC, Kay KR, Serrano-Pozo A, Joyner D, et al.: Apolipoprotein E4 effects in Alzheimer’s disease are mediated by synaptotoxic oligomeric amyloid-beta. Brain 2012, 135:2155-68.
- [6]Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261:921-3.
- [7]Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al.: Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993, 43:1467-72.
- [8]Houlden H, Crook R, Backhovens H, Prihar G, Baker M, Hutton M, et al.: ApoE genotype is a risk factor in nonpresenilin early-onset Alzheimer’s disease families. Am J Med Genet 1998, 81:117-21.
- [9]Breitner JC, Jarvik GP, Plassman BL, Saunders AM, Welsh KA: Risk of Alzheimer disease with the epsilon4 allele for apolipoprotein E in a population-based study of men aged 62-73 years. Alzheimer Dis Assoc Disord 1998, 12:40-4.
- [10]Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al.: Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997, 278:1349-56.
- [11]Khachaturian AS, Corcoran CD, Mayer LS, Zandi PP, Breitner JC: Apolipoprotein E epsilon4 count affects age at onset of Alzheimer disease, but not lifetime susceptibility: The Cache County Study. Arch Gen Psychiatry 2004, 61:518-24.
- [12]Roses AD: Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 1996, 47:387-400.
- [13]Reitz C, Mayeux R: Use of genetic variation as biomarkers for mild cognitive impairment and progression of mild cognitive impairment to dementia. J Alzheimers Dis 2010, 19:229-51.
- [14]Leoni V: The effect of apolipoprotein E (ApoE) genotype on biomarkers of amyloidogenesis, tau pathology and neurodegeneration in Alzheimer’s disease. Clin Chem Lab Med 2011, 49:375-83.
- [15]Bu G: Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009, 10:333-44.
- [16]Liu CC, Kanekiyo T, Xu H, Bu G: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013, 9:106-18.
- [17]Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al.: Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. American J Pathol 1999, 155:853-62.
- [18]McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, et al.: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 1999, 46:860-6.
- [19]Wang J, Dickson DW, Trojanowski JQ, Lee VM: The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol 1999, 158:328-37.
- [20]Tomic JL, Pensalfini A, Head E, Glabe CG: Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis 2009, 35:352-8.
- [21]Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ: Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 2011, 108:5819-24.
- [22]Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, et al.: Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 1996, 271:4077-81.
- [23]Selkoe DJ: Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 2011, 17:1060-5.
- [24]Cosentino S, Scarmeas N, Helzner E, Glymour MM, Brandt J, Albert M, et al.: APOE epsilon 4 allele predicts faster cognitive decline in mild Alzheimer disease. Neurology 2008, 70:1842-9.
- [25]Carrasquillo MM, Crook JE, Pedraza O, Thomas CS, Pankratz VS, Allen M, et al.: Late-onset Alzheimer’s risk variants in memory decline, incident mild cognitive impairment, and Alzheimer's disease. Neurobiol Aging 2014, 36:60-7.
- [26]Caselli RJ, Dueck AC, Osborne D, Sabbagh MN, Connor DJ, Ahern GL, et al.: Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N Engl J Med 2009, 361:255-63.
- [27]Caselli RJ, Reiman EM, Locke DE, Hutton ML, Hentz JG, Hoffman-Snyder C, et al.: Cognitive domain decline in healthy apolipoprotein E epsilon4 homozygotes before the diagnosis of mild cognitive impairment. Arch Neurol 2007, 64:1306-11.
- [28]Christensen H, Batterham PJ, Mackinnon AJ, Jorm AF, Mack HA, Mather KA, et al.: The association of APOE genotype and cognitive decline in interaction with risk factors in a 65-69 year old community sample. BMC Geriatr 2008, 8:14.
- [29]Schiepers OJ, Harris SE, Gow AJ, Pattie A, Brett CE, Starr JM, et al.: APOE E4 status predicts age-related cognitive decline in the ninth decade: longitudinal follow-up of the Lothian Birth Cohort 1921. Mol Psychiatry 2012, 17:315-24.
- [30]Mak AC, Pullinger CR, Tang LF, Wong JS, Deo RC, Schwarz JM, et al.: Effects of the Absence of Apolipoprotein E on Lipoproteins, Neurocognitive Function, and Retinal Function. JAMA Neurol 2014, 71(10):1228-36.
- [31]Rodriguez GA, Burns MP, Weeber EJ, Rebeck GW: Young APOE4 targeted replacement mice exhibit poor spatial learning and memory, with reduced dendritic spine density in the medial entorhinal cortex. Learn Mem 2013, 20:256-66.
- [32]Salomon-Zimri S, Boehm-Cagan A, Liraz O, Michaelson DM: Hippocampus-related cognitive impairments in young apoE4 targeted replacement mice. Neurodegener Dis 2014, 13:86-92.
- [33]Bour A, Grootendorst J, Vogel E, Kelche C, Dodart JC, Bales K, et al.: Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks. Behav Brain Res 2008, 193:174-82.
- [34]Grootendorst J, Bour A, Vogel E, Kelche C, Sullivan PM, Dodart JC, et al.: Human apoE targeted replacement mouse lines: h-apoE4 and h-apoE3 mice differ on spatial memory performance and avoidance behavior. Behav Brain Res 2005, 159:1-14.
- [35]Tai LM, Youmans KL, Jungbauer L, Yu C, Ladu MJ: Introducing Human APOE into Abeta Transgenic Mouse Models. Inter J Alzheimer’s Dis 2011, 2011:810981.
- [36]Raber J, Wong D, Yu GQ, Buttini M, Mahley RW, Pitas RE, et al.: Apolipoprotein E and cognitive performance. Nature 2000, 404:352-4.
- [37]Danysz W, Parsons CG: Alzheimer’s disease, beta-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. Br J Pharmacol 2012, 167:324-52.
- [38]Gong Y, Lippa CF: Review: disruption of the postsynaptic density in Alzheimer’s disease and other neurodegenerative dementias. Am J Alzheimers Dis Other Demen 2010, 25:547-55.
- [39]Stranahan AM, Mattson MP: Selective vulnerability of neurons in layer II of the entorhinal cortex during aging and Alzheimer’s disease. Neural Plast 2010, 2010:108190.
- [40]Ly PT, Song W: Loss of activated CaMKII at the synapse underlies Alzheimer’s disease memory loss. J Neurochem 2011, 119:673-5.
- [41]Saura CA, Valero J: The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 2011, 22:153-69.
- [42]Paramanik V, Thakur MK: Role of CREB signaling in aging brain. Arch Ital Biol 2013, 151:33-42.
- [43]Kim JH, Roberts DS, Hu Y, Lau GC, Brooks-Kayal AR, Farb DH, et al.: Brain-derived neurotrophic factor uses CREB and Egr3 to regulate NMDA receptor levels in cortical neurons. J Neurochem 2012, 120:210-9.
- [44]Yong SM, Lim ML, Low CM, Wong BS: Reduced neuronal signaling in the ageing apolipoprotein-E4 targeted replacement female mice. Sci Rep 2014, 4:6580.
- [45]Nwabuisi-Heath E, Rebeck GW, Ladu MJ, Yu C: ApoE4 delays dendritic spine formation during neuron development and accelerates loss of mature spines in vitro. ASN Neuro 2014, 6:e00134.
- [46]Chen Y, Durakoglugil MS, Xian X, Herz J: ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci U S A 2010, 107:12011-6.
- [47]Zhu Y, Nwabuisi-Heath E, Dumanis SB, Tai LM, Yu C, Rebeck GW, et al.: APOE genotype alters glial activation and loss of synaptic markers in mice. Glia 2012, 60:559-69.
- [48]Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M, et al.: APOE4-specific Changes in Abeta Accumulation in a New Transgenic Mouse Model of Alzheimer Disease. J Biol Chem 2012, 287:41774-86.
- [49]Dumanis SB, Tesoriero JA, Babus LW, Nguyen MT, Trotter JH, Ladu MJ, et al.: ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neurosci J Soc Neurosci 2009, 29:15317-22.
- [50]Trommer BL, Shah C, Yun SH, Gamkrelidze G, Pasternak ES, Ye GL, et al.: ApoE isoform affects LTP in human targeted replacement mice. Neuroreport 2004, 15:2655-8.
- [51]Trommer BL, Shah C, Yun SH, Gamkrelidze G, Pasternak ES, Stine WB, et al.: ApoE isoform-specific effects on LTP: blockade by oligomeric amyloid-beta1-42. Neurobiol Dis 2005, 18:75-82.
- [52]Manelli AM, Bulfinch LC, Sullivan PM, LaDu MJ: Abeta42 neurotoxicity in primary co-cultures: effect of apoE isoform and Abeta conformation. Neurobiol Aging 2007, 28:1139-47.
- [53]Altmann A, Tian L, Henderson VW, Greicius MD: Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol 2014, 75:563-73.
- [54]Bretsky PM, Buckwalter JG, Seeman TE, Miller CA, Poirier J, Schellenberg GD, et al.: Evidence for an interaction between apolipoprotein E genotype, gender, and Alzheimer disease. Alzheimer Dis Assoc Disord 1999, 13:216-21.
- [55]Payami H, Zareparsi S, Montee KR, Sexton GJ, Kaye JA, Bird TD, et al.: Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. Am J Hum Genet 1996, 58:803-11.
- [56]Sullivan PM, Mezdour H, Aratani Y, Knouff C, Najib J, Reddick RL, et al.: Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 1997, 272:17972-80.
- [57]Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al.: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 2006, 26:10129-40.
- [58]Tai LM, Koster KP, Luo J, Lee SH, Wang YT, Collins NC, et al.: Amyloid-beta Pathology and APOE Genotype Modulate Retinoid X Receptor Agonist Activity in Vivo. J Biol Chem 2014, 289:30538-55.
- [59]Tai LM, Bilousova T, Jungbauer L, Roeske SK, Youmans KL, Yu C, et al.: Levels of soluble apolipoprotein E/amyloid-beta (Abeta) complex are reduced and oligomeric Abeta increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. J Biol Chem 2013, 288:5914-26.
- [60]Sullivan PM, Han B, Liu F, Mace BE, Ervin JF, Wu S, et al.: Reduced levels of human apoE4 protein in an animal model of cognitive impairment. Neurobiol Aging 2011, 32:791-801.
- [61]Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo K, et al.: Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet 2012, 21:4558-71.
- [62]Riddell DR, Zhou H, Atchison K, Warwick HK, Atkinson PJ, Jefferson J, et al.: Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci 2008, 28:11445-53.
- [63]Vitek MP, Brown CM, Colton CA: APOE genotype-specific differences in the innate immune response. Neurobiol Aging 2009, 30:1350-60.
- [64]Martinez-Morillo E, Hansson O, Atagi Y, Bu G, Minthon L, Diamandis EP, et al.: Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s di’sease patients and controls. Acta Neuropathol 2014, 127:633-43.
- [65]May P, Rohlmann A, Bock HH, Zurhove K, Marth JD, Schomburg ED, et al.: Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol Cell Biol 2004, 24:8872-83.
- [66]Lin YC, Koleske AJ: Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annu Rev Neurosci 2010, 33:349-78.
- [67]Pozueta J, Lefort R, Shelanski ML: Synaptic changes in Alzheimer’s disease and its models. Neuroscience 2013, 251:51-65.
- [68]Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ: Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 1997, 56:933-44.
- [69]Zhang F, Kang Z, Li W, Xiao Z, Zhou X: Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer’s disease. J Clin Neurosci 2012, 19:946-9.
- [70]Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB: Downregulation of CREB expression in Alzheimer’s brain and in Abeta-treated rat hippocampal neurons. Mol Neurodegener 2011, 6:60.
- [71]Ohkubo N, Mitsuda N, Tamatani M, Yamaguchi A, Lee YD, Ogihara T, et al.: Apolipoprotein E4 stimulates CREB’s transcriptional activity through the ERK pathway. J Biol Chem 2000, 276:3046-53.
- [72]Garzon DJ, Fahnestock M: Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci 2007, 27:2628-35.
- [73]Min D, Guo F, Zhu S, Xu X, Mao X, Cao Y, et al.: The alterations of Ca2+/calmodulin/CaMKII/CaV1.2 signaling in experimental models of Alzheimer’s disease and vascular dementia. Neurosci Lett 2013, 538:60-5.
- [74]Kanekiyo T, Xu H, Bu G: ApoE and Abeta in Alzheimer’s disease: accidental encounters or partners? Neuron 2014, 81:740-54.
- [75]Andrews-Zwilling Y, Bien-Ly N, Xu Q, Li G, Bernardo A, Yoon SY, et al.: Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neuorosci 2010, 30:13707-17.
- [76]Siegel JA, Haley GE, Raber J: Apolipoprotein E isoform-dependent effects on anxiety and cognition in female TR mice. Neurobiol Aging 2012, 33:345-58.
- [77]Robertson J, Curley J, Kaye J, Quinn J, Pfankuch T, Raber J: apoE isoforms and measures of anxiety in probable AD patients and Apoe-/- mice. Neurobiol Aging 2005, 26:637-43.
- [78]Ohno M, Chang L, Tseng W, Oakley H, Citron M, Klein WL, et al.: Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci 2006, 23:251-60.
- [79]Urano T, Tohda C: Icariin improves memory impairment in Alzheimer’s disease model mice (5xFAD) and attenuates amyloid beta-induced neurite atrophy. Phytother Res 2010, 24:1658-63.
- [80]Shukla V, Zheng YL, Mishra SK, Amin ND, Steiner J, Grant P, et al.: A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer’s disease phenotypes in model mice. FASEB J 2013, 27:174-86.
- [81]Tohda C, Urano T, Umezaki M, Nemere I, Kuboyama T: Diosgenin is an exogenous activator of 1,25D(3)-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci Rep 2012, 2:535.
- [82]Devi L, Ohno M: Mitochondrial dysfunction and accumulation of the beta-secretase-cleaved C-terminal fragment of APP in Alzheimer’s disease transgenic mice. Neurobiol Dis 2012, 45:417-24.
- [83]Buttini M, Yu GQ, Shockley K, Huang Y, Jones B, Masliah E, et al.: Modulation of Alzheimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein E depends on isoform, aging, and overexpression of amyloid beta peptides but not on plaque formation. J Neurosci 2002, 22:10539-48.
- [84]Ji Y, Gong Y, Gan W, Beach T, Holtzman DM, Wisniewski T: Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer’s disease patients. Neuroscience 2003, 122:305-15.
- [85]Wang C, Wilson WA, Moore SD, Mace BE, Maeda N, Schmechel DE, et al.: Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol Dis 2005, 18:390-8.
- [86]Zhong N, Scearce-Levie K, Ramaswamy G, Weisgraber KH: Apolipoprotein E4 domain interaction: synaptic and cognitive deficits in mice. Alzheimer’s Dementia J Alzheimer’s Assoc 2008, 4:179-92.
- [87]Sen A, Alkon DL, Nelson TJ: Apolipoprotein E3 (ApoE3) but not ApoE4 protects against synaptic loss through increased expression of protein kinase C epsilon. J Biol Chem 2012, 287:15947-58.
- [88]Calhoun ME, Kurth D, Phinney AL, Long JM, Hengemihle J, Mouton PR, et al.: Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice. Neurobiol Aging 1998, 19:599-606.
- [89]Nicolle MM, Gallagher M, McKinney M: No loss of synaptic proteins in the hippocampus of aged, behaviorally impaired rats. Neurobiol Aging 1999, 20:343-8.
- [90]Lin N, Pan XD, Chen AQ, Zhu YG, Wu M, Zhang J, et al.: Tripchlorolide improves age-associated cognitive deficits by reversing hippocampal synaptic plasticity impairment and NMDA receptor dysfunction in SAMP8 mice. Behav Brain Res 2014, 258:8-18.
- [91]Billard JM, Rouaud E: Deficit of NMDA receptor activation in CA1 hippocampal area of aged rats is rescued by D-cycloserine. Eur J Neurosci 2007, 25:2260-8.
- [92]Bodhinathan K, Kumar A, Foster TC: Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J Neurosci 2010, 30:1914-24.
- [93]Cammarota M, Bevilaqua LR, Viola H, Kerr DS, Reichmann B, Teixeira V, et al.: Participation of CaMKII in neuronal plasticity and memory formation. Cell Mol Neurobiol 2002, 22:259-67.
- [94]Miller S, Yasuda M, Coats JK, Jones Y, Martone ME, Mayford M: Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 2002, 36:507-19.
- [95]Fowler SW, Chiang AC, Savjani RR, Larson ME, Sherman MA, Schuler DR, et al.: Genetic modulation of soluble abeta rescues cognitive and synaptic impairment in a mouse model of Alzheimer’s disease. J Neurosci 2014, 34:7871-85.
- [96]Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, et al.: Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood 1999, 93:2771-9.
- [97]Mu JS, Li WP, Yao ZB, Zhou XF: Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res 1999, 835:259-65.
- [98]Tohda C, Nakada R, Urano T, Okonogi A, Kuboyama T: Kamikihi-to (KKT) rescues axonal and synaptic degeneration associated with memory impairment in a mouse model of Alzheimer’s disease, 5XFAD. Int J Neurosci 2011, 121:641-8.
- [99]Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ: Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 2014, 5:88.
- [100]Riedel G, Platt B, Micheau J: Glutamate receptor function in learning and memory. Behav Brain Res 2003, 140:1-47.
- [101]Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, et al.: ApoE influences amyloid-beta (Abeta) clearance despite minimal apoE/Abeta association in physiological conditions. Proc Natl Acad Sci U S A 2013, 110:E1807-16.
- [102]Garai K, Verghese PB, Baban B, Holtzman DM, Frieden C: The Binding of Apolipoprotein E to Oligomers and Fibrils of Amyloid-beta Alters the Kinetics of Amyloid Aggregation. Biochemistry 2014, 53:6323-31.
- [103]Pankiewicz JE, Guridi M, Kim J, Asuni AA, Sanchez S, Sullivan PM, et al.: Blocking the apoE/Abeta interaction ameliorates Abeta-related pathology in APOE epsilon2 and epsilon4 targeted replacement Alzheimer model mice. Acta Neuropathol Commun 2014, 2:75.
- [104]Durakoglugil MS, Chen Y, White CL, Kavalali ET, Herz J: Reelin signaling antagonizes beta-amyloid at the synapse. Proc Natl Acad Sci U S A 2009, 106:15938-43.
- [105]Belinson H, Kariv-Inbal Z, Kayed R, Masliah E, Michaelson DM: Following activation of the amyloid cascade, apolipoprotein E4 drives the in vivo oligomerization of amyloid-beta resulting in neurodegeneration. J Alzheimers Dis 2010, 22:959-70.
- [106]Fuentealba RA, Liu Q, Zhang J, Kanekiyo T, Hu X, Lee JM, et al.: Low-density lipoprotein receptor-related protein 1 (LRP1) mediates neuronal Abeta42 uptake and lysosomal trafficking. PLoS One 2010, 5:e11884.
- [107]Kanekiyo T, Cirrito JR, Liu CC, Shinohara M, Li J, Schuler DR, et al.: Neuronal Clearance of Amyloid-beta by Endocytic Receptor LRP1. J Neurosci 2013, 33:19276-83.
- [108]Li J, Kanekiyo T, Shinohara M, Zhang Y, LaDu MJ, Xu H, et al.: Differential regulation of amyloid-beta endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J Biol Chem 2012, 287:44593-601.
- [109]Herz J, Chen Y: Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci 2006, 7:850-9.
- [110]Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, et al.: Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 2005, 47:567-79.
- [111]Chen Y, Beffert U, Ertunc M, Tang TS, Kavalali ET, Bezprozvanny I, et al.: Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci 2005, 25:8209-16.
- [112]Heeren J, Grewal T, Laatsch A, Becker N, Rinninger F, Rye KA, et al.: Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation. J Biol Chem 2004, 279:55483-92.
- [113]Wolf AB, Valla J, Bu G, Kim J, Ladu MJ, Reiman EM, et al.: Apolipoprotein E as a beta-amyloid-independent factor in alzheimer’s disease. Alzheimer’s Res Ther 2013, 5:38.
- [114]Haass C, Selkoe DJ: Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007, 8:101-12.
- [115]Rodriguez GA, Tai LM, LaDu MJ, Rebeck GW: Human APOE4 increases microglia reactivity at Abeta plaques in a mouse model of Abeta deposition. J Neuroinflammation 2014, 11:111.
- [116]Kunzler J, Youmans KL, Yu C, Ladu MJ, Tai L: APOE modulates the effect of estrogen therapy on Abeta accumulation EFAD-Tg mice. Neurosci Lett 2013, 560:131-6.
- [117]Tai LM, Mehra S, Shete V, Estus S, Rebeck GW, Bu G, et al.: Soluble apoE/Abeta complex: mechanism and therapeutic target for APOE4-induced AD risk. Mol Neurodegener 2014, 9:2.
- [118]Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, et al.: Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 1999, 96:15233-8.
- [119]Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, et al.: Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J Clin Invest 1999, 103:R15-21.
- [120]Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, et al.: Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2000, 97:2892-7.
- [121]Boehm-Cagan A, Michaelson DM: Reversal of apoE4-Driven Brain Pathology and Behavioral Deficits by Bexarotene. J Neurosci 2014, 34:7293-301.
- [122]Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, et al.: Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 2012, 485:512-6.
- [123]Bachmeier C, Paris D, Beaulieu-Abdelahad D, Mouzon B, Mullan M, Crawford F: A multifaceted role for apoE in the clearance of beta-amyloid across the blood-brain barrier. Neurodegener Dis 2013, 11:13-21.
- [124]Hartman RE, Wozniak DF, Nardi A, Olney JW, Sartorius L, Holtzman DM: Behavioral phenotyping of GFAP-apoE3 and -apoE4 transgenic mice: apoE4 mice show profound working memory impairments in the absence of Alzheimer’s-like neuropathology. Exp Neurol 2001, 170:326-44.
- [125]van Meer P, Acevedo S, Raber J: Impairments in spatial memory retention of GFAP-apoE4 female mice. Behav Brain Res 2007, 176:372-5.
- [126]Raber J, Wong D, Buttini M, Orth M, Bellosta S, Pitas RE, et al.: Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc Natl Acad Sci U S A 1998, 95:10914-9.
- [127]Zepa L, Frenkel M, Belinson H, Kariv-Inbal Z, Kayed R, Masliah E, et al.: ApoE4-Driven Accumulation of Intraneuronal Oligomerized Abeta42 following Activation of the Amyloid Cascade In Vivo Is Mediated by a Gain of Function. Inter J Alzheimer’s Dis 2011, 2011:792070.
- [128]Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A, Wang C, Huang Y: C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-{beta} (A{beta}) and acts in concert with A{beta} to elicit neuronal and behavioral deficits in mice. Proc Natl Acad Sci U S A 2011, 108:4236-41.
- [129]Rohn TT: Proteolytic cleavage of apolipoprotein E4 as the keystone for the heightened risk associated with Alzheimer’s disease. Int J Mol Sci 2013, 14:14908-22.
- [130]Hussain A, Luong M, Pooley A, Nathan BP: Isoform-specific effects of apoE on neurite outgrowth in olfactory epithelium culture. J Biomed Sci 2013, 20:49.
- [131]Nathan BP, Jiang Y, Wong GK, Shen F, Brewer GJ, Struble RG: Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite outgrowth in cultured adult mouse cortical neurons through the low- density lipoprotein receptor-related protein. Brain Res 2002, 928:96-105.
- [132]Shi YQ, Huang TW, Chen LM, Pan XD, Zhang J, Zhu YG, et al.: Ginsenoside Rg1 attenuates amyloid-beta content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. J Alzheimers Dis 2010, 19:977-89.
- [133]Youmans KL, Leung S, Zhang J, Maus E, Baysac K, Bu G, et al.: Amyloid-beta42 alters apolipoprotein E solubility in brains of mice with five familial AD mutations. J Neurosci Methods 2011, 196:51-9.