期刊论文详细信息
Particle and Fibre Toxicology
TcI/TcII co-infection can enhance Trypanosoma cruzi growth in Rhodnius prolixus
Ana M Jansen1  Peter J Waniek1  Catarina A C Araújo1 
[1] Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz – IOC/FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, Brazil
关键词: Digestive tract;    Rhodnius prolixus;    Mixed infections;    TcII;    TcI;    Trypanosoma cruzi;   
Others  :  811725
DOI  :  10.1186/1756-3305-7-94
 received in 2013-09-15, accepted in 2014-02-22,  发布年份 2014
PDF
【 摘 要 】

Background

Rhodnius prolixus is an obligate haematophagous insect and one of the most important vectors of Trypanosoma cruzi, the causative agent of Chagas disease in the Americas. T. cruzi is a highly variable parasite which is not transmitted in the same efficiency by the different triatomine vectors. Because different T. cruzi genotypes are aetiopathologically divergent, further elucidation of the transmission abilities of different Chagas disease vectors is extremely important.

Findings

In the present study, the growth behaviour of two T. cruzi isolates, MDID/BR/1993/C45 (TcI) and TBRA/BR/1999/JCA3 (TcII), sharing the same microhabitat (intestinal tract) in single and mixed infections, was examined. The distribution patterns and parasite population densities were evaluated at 7, 14 and 21 days after feeding (daf) by quantification of parasites using Neubauer haemocytometric measurements and mini-exon PCR to identify TcI and TcII subpopulations. Parasitic colonization in the small intestine was more successful in the mixed infection model than the single infection models at 21 daf. In the rectal lumen and wall, the growth behaviour of the mixed infection was similar to that of the TcI group, although the total parasite number was lower. In the TcII group, no metacyclic trypomastigote forms were found. PCR analysis of the contents of each dissected region showed different genotype fractions in the mixed infection model, in which TcI seemed to be the predominant isolate.

Conclusion

The different growth behaviour of the TcI and TcII isolates in single and mixed infection models demonstrated that possibly an intraspecific factor modulates parasitic development in the intestine of R. prolixus.

【 授权许可】

   
2014 Araújo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709071615130.pdf 399KB PDF download
Figure 4. 61KB Image download
Figure 3. 22KB Image download
Figure 2. 27KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Cortez MR, Pinho AP, Cuervo P, Alfaro F, Solano M, Xavier SCC, D’Andrea PS, Fernandes O, Torrico F, Noireau F, Jansen AM: Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae): ecology of the transmission cycle in the wild environment of the Andean valley of Cochabamba, Bolivia. Exp Parasitol 2006, 114:305-313.
  • [2]Dias JCP: Notas sobre o Trypanosoma cruzi e suas características bioecológicas, como agente de enfermidades transmitidas por alimentos. Rev Soc Bras Med Trop 2006, 39:370-375.
  • [3]Schofield CJ: Biosystematics of the Triatominae. In Biosystematics of haematophagous insects. The systematics association. Edited by Service MW. Oxford: Clarendon Press; 1988:285-310.
  • [4]Pinho AP, Gonçalves TCM, Mangia RH, Russel NSN, Jansen AM: The occurrence of Rhodnius prolixus Stål, 1859, naturally infected by Trypanosoma cruzi in the state of Rio de Janeiro, Brazil (Hemiptera, Reduviidae, Triatominae). Mem Inst Oswaldo Cruz 1998, 93:141-143.
  • [5]Jurberg J, Galvão C: Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health. Denisia 19, zugleich Kataloge der OÖ Landesmuseen 2006, 50:1096-1116.
  • [6]Anonymous: Recommendations from a satellite meeting. Mem Inst Oswaldo Cruz 1999, 94:429-432.
  • [7]Brisse S, Barnabé C, Tibayrenc M: Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol 2000, 30:35-44.
  • [8]Pacheco RS, Brito CMM, Sarquis O, Pires MQ, Borges-Pereira J, Lima MM: Genetic heterogeneity in Trypanosoma cruzi strains from naturally infected triatomine vectors in northeastern Brazil: epidemiological implications. Biochem Genet 2005, 43:519-530.
  • [9]Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG: A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 2009, 104:1051-1054.
  • [10]Schaub GA: Metacyclogenesis of Trypanosoma cruzi in the vector Triatoma infestans. Mem Inst Oswaldo Cruz 1988, 83:563-570.
  • [11]Schaub GA, Böker CA, Jensen C, Reduth D: Cannibalism and coprophagy are modes of transmission of Blastocrithidia triatomae (Trypanosomatidae) between triatomines. J Protozool 1989, 36:171-175.
  • [12]Bosseno M-F, Telleria J, Vargas F, Yaksic N, Noireau F, Morin A, Brenière SF: Trypanosoma cruzi: study of the distribution of two widespread clonal genotypes in Bolivian Triatoma infestans vectors shows a high frequency of mixed infections. Exp Parasitol 1996, 83:275-282.
  • [13]Ramirez LE, Lages-Silva E, Alvarenga-Franco F, Matos A, Vargas N, Fernandes O, Zingales B: High prevalence of Trypanosoma rangeli and Trypanosoma cruzi in opossums and triatomids in a formerly-endemic area of Chagas disease in Southeast Brazil. Acta Trop 2002, 84:189-198.
  • [14]Vallejo GA, Guhl F, Schaub GA: Triatominae-Trypanosoma cruzi/T. rangeli: vector-parasite interactions. Acta Trop 2008, 110:137-147.
  • [15]Gower M, Webster JP: Intraspecific competition and the evolution of virulence in a parasitic trematode. Evolution 2005, 59:544-553.
  • [16]Alizon S, Lion S: Within-host parasite cooperation and the evolution of virulence. Proc Biol Sci 2011, 278:3738-3747.
  • [17]Ebert D, Zschokke-Rohringer C, Carius HJ: Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia 2000, 122:200-209.
  • [18]Pinho AP, Cupolillo E, Mangia RH, Fernandes O, Jansen AM: Trypanosoma cruzi in the sylvatic environment: distinct transmission cycles involving two sympatric marsupials. Trans R Soc Trop Med Hyg 2000, 94:1-6.
  • [19]Chiari E, Camargo EP: Culture and cloning of Trypanosoma cruzi. In Genes and Antigens of Parasites, A Laboratory Manual. Edited by Morel CM. CM. Rio de Janeiro; Fundação Oswaldo Cruz: World Health Organization; 1984:23-26.
  • [20]Fernandes O, Mangia RH, Lisboa CV, Pinho AP, Morel CM, Zingales B, Campbell DA, Jansen AM: The complexity of the sylvatic cycle of Trypanosoma cruzi in Rio de Janeiro state (Brazil) revealed by the non-transcribed spacer of the mini-exon gene. Parasitology 1999, 118:161-166.
  • [21]Araújo CAC, Mello CB, Jansen AM: Trypanosoma cruzi I and Trypanosoma cruzi II: recognition of sugar structures by Arachis hypogaea (peanut agglutinin) lectin. J Parasitol 2002, 88:582-586.
  • [22]Araújo CAC, Waniek PJ, Xavier SCC, Jansen AM: Genotype variation of Trypanosoma cruzi isolates from different Brazilian biomes. Exp Parasitol 2011, 127:308-312.
  • [23]Mello CB, Azambuja P, Garcia ES, Ratcliffe NA: Differential in vitro and in vivo behaviour of three strains of Trypanosoma cruzi in the gut and hemolymph of Rhodnius prolixus. Exp Parasitol 1996, 82:112-121.
  • [24]Araújo CAC, Cabello PH, Jansen AM: Growth behaviour of two Trypanosoma cruzi strains in single and mixed infections: in vitro and in the intestinal tract of the blood-sucking bug, Triatoma brasiliensis. Acta Trop 2007, 101:225-231.
  • [25]Araújo CAC, Waniek PJ, Jansen AM: Development of a Trypanosoma cruzi (TcI) isolate in the digestive tract of an unfamiliar vector, Triatoma brasiliensis (Hemiptera, Reduviidae). Acta Trop 2008, 107:195-199.
  • [26]Kollien AH, Schaub GA: The development of Trypanosoma cruzi (Trypanosomatidae) in the reduviid bug Triatoma infestans (Insecta): influence of starvation. J Euk Microbiol 1998, 45:59-63.
  • [27]Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B: DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 1996, 83:141-152.
  • [28]Taylor LH, Walliker D, Read AF: Mixed-genotype infections of malaria parasites: within-host dynamics and transmission success of competing clones. Proc R Soc London B 1997, 264:927-935.
  • [29]Castro DP, Moraes CS, Gonzales MS, Ratcliffe NA, Azambuja P, Garcia ES: Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS One 2012, 7:e36591.
  • [30]Añez N, Crisante G, Añez-Rojas N, Rojas A, Moreno G, Maia da Silva F, Teixeira MMG: Genetic typing of Trypanosoma cruzi isolates from different hosts and geographical areas of western Venezuela. Bol Mal Salud Amb 2009, 49:251-258.
  • [31]Morocoima A, Chique J, Zavala-Jaspe R, Díaz-Bello Z, Ferrer E, Urdaneta-Morales S, Herrera L: Commercial coconut palm as an ecotope of Chagas disease vectors in north-eastern Venezuela. J Vector Borne Dis 2010, 47:76-84.
  • [32]Schijman AG, Bisio M, Orellana L, Sued M, Duffy T, Mejia Jaramillo AM, Cura C, Auter F, Veron V, Qvarnstrom Y, Deborggraeve S, Hijar G, Zulantay I, Lucero RH, Velazquez E, Tellez T, Sanchez Leon Z, Galvão L, Nolder D, Rumi MM, Levi JE, Ramirez JD, Zorrilla P, Flores M, Jercic MI, Crisante G, Añez N, De Castro AM, Gonzalez CI, Acosta Viana K, et al.: International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl Trop Dis 2011, 5:e931.
  • [33]Finley RW, Dvorak JS: Trypanosoma cruzi: analysis of the population dynamics of heterogeneous mixtures. J Protozool 1987, 34:409-415.
  • [34]Bosseno M-F, Yacsik N, Vargas F, Brenière SF: Selection of Trypanosoma cruzi clonal genotypes (clonet 20 and 39) isolated from Bolivian triatomines following subculture in liquid medium. Mem Inst Oswaldo Cruz 2000, 95:601-607.
  • [35]Pinto AS, Lana M, Britto C, Bastrenta B, Barnabé C, Quesney V, Noël S, Tibayrenc M: Compared vectorial transmissibility of pure and mixed clonal genotypes of Trypanosoma cruzi in Triatoma infestans. Parasitol Res 1998, 84:348-353.
  • [36]Pinto AS, Lana M, Britto C, Bastrenta B, Tibayrenc M: Experimental Trypanosoma cruzi biclonal infection in Triatoma infestans: detection of distinct clonal genotypes using kinetoplast DNA probes. Int J Parasitol 2000, 30:843-848.
  • [37]Kollien AH, Schaub GA: The development of Trypanosoma cruzi in Triatominae. Parasitol Today 2000, 16:381-387.
  • [38]Schaub GA, Kleffmann T, Kollien AH, Schmidt J: Hydrophobic attachment of Trypanosoma cruzi to the rectal cuticle of Triatoma infestans and its influence on metacyclogenesis - a review. Tokai J Exp Clin Med 1998, 23:321-327.
  • [39]Alves CR, Albuquerque-Cunha JM, Mello CB, Garcia ES, Nogueira NF, Bourguingnon SC, de Souza W, Azambuja P, Gonzalez MS: Trypanosoma cruzi: attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus. Exp Parasitol 2007, 116:44-52.
  • [40]Nogueira NFS, Gonzalez MS, Gomes JE, de Souza W, Garcia ES, Azambuja P, Nohara LL, Almeida IC, Zingales B, Colli W: Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Exp Parasitol 2007, 116:120-128.
  • [41]Uehara LA, Moreira O, Oliveira AC, Azambuja P, Araujo Lima APC, Britto C, Souza dos Santos AL AL, Branquinha MH, d’Avila-Levy CM: Cruzipain promotes Trypanosoma cruzi adhesion to Rhodnius prolixus midgut. PLoS Negl Trop Dis 2012, 6:e1958.
  文献评价指标  
  下载次数:30次 浏览次数:8次