Molecular Pain | |
Positive allosteric modulation of TRPV1 as a novel analgesic mechanism | |
Michael J Iadarola2  Dragan Maric1  Krisztian Kaszas2  Hal Kominsky2  Jason M Keller2  Evan E Lebovitz2  | |
[1] Laboratory of Neurophysiology, NINDS, NIH, Bethesda, MD, 20892, USA;Neurobiology and Pain Therapeutics Section, Laboratory Of Sensory Biology, NIDCR, NIH, Bldg 49 Rm 1C2049 Convent Dr, Bethesda, MD, 20892, USA | |
关键词: Adelta fiber; MRS1477; Dorsal root ganglion; ATF3; Resiniferatoxin; Nociception; Vanilloid; Capsaicin; Pain; TRPV1; | |
Others : 863366 DOI : 10.1186/1744-8069-8-70 |
|
received in 2012-07-06, accepted in 2012-09-11, 发布年份 2012 | |
【 摘 要 】
Background
The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment.
Results
Withdrawal responses of the capsaicin-only or MRS1477-only treated paws were not significantly different from the untreated, contralateral paws. However, rats treated with the combination of capsaicin and MRS1477 exhibited increased withdrawal latency and decreased response intensity consistent with agonist potentiation and inactivation or lesion of TRPV1-containing nerve terminals. The loss of nerve endings was manifested by an increase in levels of axotomy markers assessed by qRT-PCR and colocalization of ATF3 in TRPV1+ cells visualized via immunohistochemistry.
Conclusions
The present observations suggest a novel, non-narcotic, selective, long-lasting TRPV1-based approach for analgesia that may be effective in acute, persistent, or chronic pain disorders.
【 授权许可】
2012 Lebovitz et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725041855589.pdf | 1643KB | download | |
105KB | Image | download | |
54KB | Image | download | |
33KB | Image | download | |
37KB | Image | download | |
23KB | Image | download | |
69KB | Image | download | |
84KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Paulozzi LJ, Budnitz DS, Xi Y: Increasing deaths from opioid analgesics in the United States. Pharmacoepidemiol Drug Saf 2006, 15:618-627.
- [2]Edlund MJ, Martin BC, Devries A, Fan MY, Braden JB, Sullivan MD: Trends in use of opioids for chronic noncancer pain among individuals with mental health and substance use disorders: the TROUP study. Clin J Pain 2010, 26:1-8.
- [3]Boudreau D, Von Korff M, Rutter CM, Saunders K, Ray GT, Sullivan MD, Campbell CI, Merrill JO, Silverberg MJ, Banta-Green C, Weisner C: Trends in long-term opioid therapy for chronic non-cancer pain. Pharmacoepidemiol Drug Saf 2009, 18:1166-1175.
- [4]Michna E, Jamison RN, Pham LD, Ross EL, Janfaza D, Nedeljkovic SS, Narang S, Palombi D, Wasan AD: Urine toxicology screening among chronic pain patients on opioid therapy: frequency and predictability of abnormal findings. Clin J Pain 2007, 23:173-179.
- [5]Compton WM, Volkow ND: Major increases in opioid analgesic abuse in the United States: concerns and strategies. Drug Alcohol Depend 2006, 81:103-107.
- [6]Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288:306-313.
- [7]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389:816-824.
- [8]Mitchell K, Bates BD, Keller JM, Lopez M, Scholl L, Navarro J, Madian N, Haspel G, Nemenov MI, Iadarola MJ: Ablation of rat TRPV1-expressing Adelta/C-fibers with resiniferatoxin: analysis of withdrawal behaviors, recovery of function and molecular correlates. Molecular Pain 2010, 6:94. BioMed Central Full Text
- [9]McQueen DS, Bond SM, Smith PJ, Balali-Mood K, Smart D: Cannabidiol lacks the vanilloid VR1-mediated vasorespiratory effects of capsaicin and anandamide in anaesthetised rats. Eur J Pharmacol 2004, 491:181-189.
- [10]Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, et al.: An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A 2002, 99:8400-8405.
- [11]Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB: The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 2000, 129:227-230.
- [12]Olah Z, Karai L, Iadarola MJ: Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J Biol Chem 2001, 276:31163-31170.
- [13]Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D, Oh U: Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci U S A 2000, 97:6155-6160.
- [14]Premkumar LS, Ahern GP: Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000, 408:985-990.
- [15]Matta JA, Miyares RL, Ahern GP: TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. J Physiol 2007, 578:397-411.
- [16]Hong Y, Abbott FV: Behavioural effects of intraplantar injection of inflammatory mediators in the rat. Neuroscience 1994, 63:827-836.
- [17]Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, et al.: Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405:183-187.
- [18]Yang HY, Mitchell K, Keller JM, Iadarola MJ: Peripheral inflammation increases Scya2 expression in sensory ganglia and cytokine and endothelial related gene expression in inflamed tissue. J Neurochem 2007, 103:1628-1643.
- [19]Maingret F, Coste B, Padilla F, Clerc N, Crest M, Korogod SM, Delmas P: Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. J Gen Physiol 2008, 131:211-225.
- [20]Kessler W, Kirchhoff C, Reeh PW, Handwerker HO: Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale 1992, 91:467-476.
- [21]Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ: p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002, 36:57-68.
- [22]Yu L, Yang F, Luo H, Liu FY, Han JS, Xing GG, Wan Y: The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund’s adjuvant. Molecular Pain 2008, 4:61. BioMed Central Full Text
- [23]Pal M, Angaru S, Kodimuthali A, Dhingra N: Vanilloid receptor antagonists: emerging class of novel anti-inflammatory agents for pain management. Curr Pharm Des 2009, 15:1008-1026.
- [24]Gomtsyan A, Bayburt EK, Schmidt RG, Surowy CS, Honore P, Marsh KC, Hannick SM, McDonald HA, Wetter JM, Sullivan JP, et al.: Identification of (R)-1-(5-tert-butyl-2,3-dihydro-1 H-inden-1-yl)-3-(1 H-indazol-4-yl)urea (ABT-102) as a potent TRPV1 antagonist for pain management. J Med Chem 2008, 51:392-395.
- [25]Chizh BA, O’Donnell MB, Napolitano A, Wang J, Brooke AC, Aylott MC, Bullman JN, Gray EJ, Lai RY, Williams PM, Appleby JM: The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain 2007, 132:132-141.
- [26]Watabiki T, Kiso T, Tsukamoto M, Aoki T, Matsuoka N: Intrathecal administration of AS1928370, a transient receptor potential vanilloid 1 antagonist, attenuates mechanical allodynia in a mouse model of neuropathic pain. Biol Pharm Bull 2011, 34:1105-1108.
- [27]Lehto SG, Tamir R, Deng H, Klionsky L, Kuang R, Le A, Lee D, Louis JC, Magal E, Manning BH, et al.: Antihyperalgesic effects of (R, E)-N-(2-hydroxy-2,3-dihydro-1 H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluorom ethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. J Pharmacol Exp Ther 2008, 326:218-229.
- [28]Wong GY, Gavva NR: Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent advances and setbacks. Brain Res Rev 2009, 60:267-277.
- [29]Kissin I, Szallasi A: Therapeutic targeting of TRPV1 by resiniferatoxin, from preclinical studies to clinical trials. Current topics in medicinal chemistry 2011, 11:2159-2170.
- [30]Iadarola MJ, Mannes AJ: The vanilloid agonist resiniferatoxin for interventional-based pain control. Current topics in medicinal chemistry 2011, 11:2171-2179.
- [31]Szallasi A, Blumberg PM: Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience 1989, 30:515-520.
- [32]Neubert JK, Karai L, Jun JH, Kim HS, Olah Z, Iadarola MJ: Peripherally induced resiniferatoxin analgesia. Pain 2003, 104:219-228.
- [33]Karai L, Brown DC, Mannes AJ, Connelly ST, Brown J, Gandal M, Wellisch OM, Neubert JK, Olah Z, Iadarola MJ: Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Investig 2004, 113:1344-1352.
- [34]Brown DC, Iadarola MJ, Perkowski SZ, Erin H, Shofer F, Laszlo KJ, Olah Z, Mannes AJ: Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology 2005, 103:1052-1059.
- [35]Backonja M, Wallace MS, Blonsky ER, Cutler BJ, Malan P Jr, Rauck R, Tobias J: NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study. Lancet Neurol 2008, 7:1106-1112.
- [36]Jeffry JA, Yu SQ, Sikand P, Parihar A, Evans MS, Premkumar LS: Selective targeting of TRPV1 expressing sensory nerve terminals in the spinal cord for long lasting analgesia. PLoS One 2009, 4:e7021.
- [37]Kissin EY, Freitas CF, Kissin I: The effects of intraarticular resiniferatoxin in experimental knee-joint arthritis. Anesth Analg 2005, 101:1433-1439.
- [38]Kissin I, Davison N, Bradley EL Jr: Perineural resiniferatoxin prevents hyperalgesia in a rat model of postoperative pain. Anesth Analg 2005, 100:774-780. table of contents
- [39]Robbins WR, Staats PS, Levine J, Fields HL, Allen RW, Campbell JN, Pappagallo M: Treatment of intractable pain with topical large-dose capsaicin: preliminary report. Anesth Analg 1998, 86:579-583.
- [40]Nolano M, Simone DA, Wendelschafer-Crabb G, Johnson T, Hazen E, Kennedy WR: Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain 1999, 81:135-145.
- [41]Bates BD, Mitchell K, Keller JM, Chan CC, Swaim WD, Yaskovich R, Mannes AJ, Iadarola MJ: Prolonged analgesic response of cornea to topical resiniferatoxin, a potent TRPV1 agonist. Pain 2010, 149:522-528.
- [42]Irving GA, Backonja M, Rauck R, Webster LR, Tobias JK, Vanhove GF: NGX-4010, a capsaicin 8% dermal patch, administered alone or in combination with systemic neuropathic pain medications, reduces pain in patients with postherpetic neuralgia. The Clinical journal of pain 2012, 28:101-107.
- [43]Simpson DM, Estanislao L, Brown SJ, Sampson J: An open-label pilot study of high-concentration capsaicin patch in painful HIV neuropathy. Journal of pain and symptom management 2008, 35:299-306.
- [44]Webster LR, Peppin JF, Murphy FT, Lu B, Tobias JK, Vanhove GF: Efficacy, safety, and tolerability of NGX-4010, capsaicin 8% patch, in an open-label study of patients with peripheral neuropathic pain. Diabetes Res Clin Pract 2011, 93:187-197.
- [45]Remadevi R, Szallisi A: Adlea (ALGRX-4975), an injectable capsaicin (TRPV1 receptor agonist) formulation for longlasting pain relief. IDrugs: the investigational drugs journal 2008, 11:120-132.
- [46]Kaszas K, Keller JM, Coddou C, Mishra SK, Hoon MA, Stojilkovic S, Jacobson KA, Iadarola MJ: Small molecule positive allosteric modulation of TRPV1 activation by vanilloids and acidic pH. J Pharmacol Exp Ther 2012, 340:152-160.
- [47]Roh EJ, Keller JM, Olah Z, Iadarola MJ, Jacobson KA: Structure-activity relationships of 1,4-dihydropyridines that act as enhancers of the vanilloid receptor 1 (TRPV1). Bioorg Med Chem 2008, 16:9349-9358.
- [48]Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K: Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 2000, 15:170-182.
- [49]Wakisaka S, Kajander KC, Bennett GJ: Increased neuropeptide Y (NPY)-like immunoreactivity in rat sensory neurons following peripheral axotomy. Neurosci Lett 1991, 124:200-203.
- [50]Hokfelt T, Wiesenfeld-Hallin Z, Villar M, Melander T: Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neurosci Lett 1987, 83:217-220.
- [51]Shehab SA, Atkinson ME: Vasoactive intestinal polypeptide (VIP) increases in the spinal cord after peripheral axotomy of the sciatic nerve originate from primary afferent neurons. Brain Research 1986, 372:37-44.
- [52]Shehab SA, Atkinson ME: Vasoactive intestinal polypeptide increases in areas of the dorsal horn of the spinal cord from which other neuropeptides are depleted following peripheral axotomy. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale 1986, 62:422-430.
- [53]Atkinson ME, Shehab SA: Peripheral axotomy of the rat mandibular trigeminal nerve leads to an increase in VIP and decrease of other primary afferent neuropeptides in the spinal trigeminal nucleus. Regul Pept 1986, 16:69-81.
- [54]Toews AD, Barrett C, Morell P: Monocyte chemoattractant protein 1 is responsible for macrophage recruitment following injury to sciatic nerve. J Neurosci Res 1998, 53:260-267.
- [55]Neubert JK, Mannes AJ, Karai LJ, Jenkins AC, Zawatski L, Abu-Asab M, Iadarola MJ: Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia. Molecular pain 2008, 4:3. BioMed Central Full Text
- [56]Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM: Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 1979, 7:103-111.
- [57]Nissenbaum J, Devor M, Seltzer Z, Gebauer M, Michaelis M, Tal M, Dorfman R, Abitbul-Yarkoni M, Lu Y, Elahipanah T, et al.: Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2. Genome Res 2010, 20:1180-1190.
- [58]Zeltser R, Beilin B, Zaslansky R, Seltzer Z: Comparison of autotomy behavior induced in rats by various clinically-used neurectomy methods. Pain 2000, 89:19-24.
- [59]Tender GC, Walbridge S, Olah Z, Karai L, Iadarola M, Oldfield EH, Lonser RR: Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation. J Neurosurg 2005, 102:522-525.
- [60]Gaudet AD, Popovich PG, Ramer MS: Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 2011, 8:110. BioMed Central Full Text
- [61]Mata M, Staple J, Fink DJ: Cytochemical localization of Ca2 + −ATPase activity in peripheral nerve. Brain research 1988, 445:47-54.
- [62]Gover TD, Moreira TH, Kao JP, Weinreich D: Calcium regulation in individual peripheral sensory nerve terminals of the rat. J Physiol 2007, 578:481-490.
- [63]Gover TD, Moreira TH, Kao JP, Weinreich D: Calcium homeostasis in trigeminal ganglion cell bodies. Cell Calcium 2007, 41:389-396.
- [64]Valant C, Robert Lane J, Sexton PM, Christopoulos A: The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Annu Rev Pharmacol Toxicol 2012, 52:153-178.
- [65]Rudolph U, Mohler H: Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 2004, 44:475-498.
- [66]Rudolph U, Knoflach F: Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov 2011, 10:685-697.
- [67]Saari TI, Uusi-Oukari M, Ahonen J, Olkkola KT: Enhancement of GABAergic activity: neuropharmacological effects of benzodiazepines and therapeutic use in anesthesiology. Pharmacol Rev 2011, 63:243-267.
- [68]Brusberg M, Ravnefjord A, Martinsson R, Larsson H, Martinez V, Lindstrom E: The GABA(B) receptor agonist, baclofen, and the positive allosteric modulator, CGP7930, inhibit visceral pain-related responses to colorectal distension in rats. Neuropharmacology 2009, 56:362-367.
- [69]Lee CH, Zhu C, Malysz J, Campbell T, Shaughnessy T, Honore P, Polakowski J, Gopalakrishnan M: alpha4beta2 neuronal nicotinic receptor positive allosteric modulation: an approach for improving the therapeutic index of alpha4beta2 nAChR agonists in pain. Biochem Pharmacol 2011, 82:959-966.
- [70]Marin JC, Goadsby PJ: Glutamatergic fine tuning with ADX-10059: a novel therapeutic approach for migraine? Expert opinion on investigational drugs 2010, 19:555-561.
- [71]Jerman JC, Gray J, Brough SJ, Ooi L, Owen D, Davis JB, Smart D: Comparison of effects of anandamide at recombinant and endogenous rat vanilloid receptors. Br J Anaesth 2002, 89:882-887.
- [72]Smart D, Jonsson KO, Vandevoorde S, Lambert DM, Fowler CJ: ‘Entourage’ effects of N-acyl ethanolamine’s at human vanilloid receptors. Comparison of effects upon anandamide-induced vanilloid receptor activation and upon anandamide metabolism. Br J Pharmacol 2002, 136:452-458.