期刊论文详细信息
Orphanet Journal of Rare Diseases
Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis
Francjan J van Spronsen1  Pieter JJ Sauer1  Anne MJ Paans2  Harold W de Valk3  Dirk-Jan Reijngoud1  Marieke Hoeksma4  Martijn J de Groot4 
[1] Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands;Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands;Department of Internal Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
关键词: Positron emission tomography;    Cerebral protein synthesis;    Blood–brain barrier;    Tyrosine;    Phenylalanine;    Phenylketonuria;   
Others  :  863575
DOI  :  10.1186/1750-1172-8-133
 received in 2013-05-10, accepted in 2013-08-21,  发布年份 2013
PDF
【 摘 要 】

Background

In phenylketonuria (PKU), elevated blood phenylalanine (Phe) concentrations are considered to impair transport of large neutral amino acids (LNAAs) from blood to brain. This impairment is believed to underlie cognitive deficits in PKU via different mechanisms, including reduced cerebral protein synthesis. In this study, we investigated the hypothesis that impaired LNAA influx relates to reduced cerebral protein synthesis.

Methods

Using positron emission tomography, L-[1-11C]-tyrosine (11C-Tyr) brain influx and incorporation into cerebral protein were studied in 16 PKU patients (median age 24, range 16 – 47 years), most of whom were early and continuously treated. Data were analyzed by regression analyses, using either 11C-Tyr brain influx or 11C-Tyr cerebral protein incorporation as outcome variable. Predictor variables were baseline plasma Phe concentration, Phe tolerance, age, and 11C-Tyr brain efflux. For the modelling of cerebral protein incorporation, 11C-Tyr brain influx was added as a predictor variable.

Results

11C-Tyr brain influx was inversely associated with plasma Phe concentrations (median 512, range 233 – 1362 μmol/L; delta adjusted R2=0.571, p=0.013). In addition, 11C-Tyr brain influx was positively associated with 11C-Tyr brain efflux (delta adjusted R2=0.098, p=0.041). Cerebral protein incorporation was positively associated with 11C-Tyr brain influx (adjusted R2=0.567, p<0.001). All additional associations between predictor and outcome variables were statistically nonsignificant.

Conclusions

Our data favour the hypothesis that an elevated concentration of Phe in blood reduces cerebral protein synthesis by impairing LNAA transport from blood to brain. Considering the importance of cerebral protein synthesis for adequate brain development and functioning, our results support the notion that PKU treatment be continued in adulthood. Future studies investigating the effects of impaired LNAA transport on cerebral protein synthesis in more detail are indicated.

【 授权许可】

   
2013 de Groot et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725050339354.pdf 489KB PDF download
21KB Image download
20KB Image download
83KB Image download
32KB Image download
【 图 表 】

【 参考文献 】
  • [1]Blau N, van Spronsen , Levy HL: Phenylketonuria. Lancet 2010, 376:1417-1427.
  • [2]Huijbregts SC, de Sonneville LM, Licht R, van Spronsen FJ, Verkerk PH, Sergeant JA: Sustained attention and inhibition of cognitive interference in treated phenylketonuria: associations with concurrent and lifetime phenylalanine concentrations. Neuropsychologia 2002, 40:7-15.
  • [3]Huijbregts SC, de Sonneville LM, van Spronsen FJ, Licht R, Sergeant JA: The neuropsychological profile of early and continuously treated phenylketonuria: orienting, vigilance, and maintenance versus manipulation-functions of working memory. Neurosci Biobehav Rev 2002, 26:697-712.
  • [4]Channon S, German E, Cassina C, Lee P: Executive functioning, memory, and learning in phenylketonuria. Neuropsychology 2004, 18:613-620.
  • [5]Channon S, Mockler C, Lee P: Executive functioning and speed of processing in phenylketonuria. Neuropsychology 2005, 19:679-686.
  • [6]Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A: Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol 2007, 32:645-668.
  • [7]Moyle JJ, Fox AM, Arthur M, Bynevelt M, Burnett JR: Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol Rev 2007, 17:91-101.
  • [8]DeRoche K, Welsh M: Twenty-five years of research on neurocognitive outcomes in early-treated phenylketonuria: intelligence and executive function. Dev Neuropsychol 2008, 33:474-504.
  • [9]Surtees R, Blau N: The neurochemistry of phenylketonuria. Eur J Pediatr 2000, 159(Suppl 2):109-113.
  • [10]van Spronsen FJ, Hoeksma M, Reijngoud DJ: Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? J Inherit Metab Dis 2009, 32:46-51.
  • [11]de Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ: Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Mol Genet Metab 2010, 99(Suppl 1):86-89.
  • [12]Rao MS, Jacobson M: In Developmental Neurobiology, Chapters 2, 5, 8, 9, 10. New York (NY): Kluwer Academic/Plenum Publishers; 2005.
  • [13]Vaillend C, Poirier R, Laroche S: Genes, plasticity and mental retardation. Behav Brain Res 2008, 192:88-105.
  • [14]Greer PL, Greenberg ME: From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 2008, 59:846-860.
  • [15]Paans AM, Pruim J, Smit GP, Visser G, Willemsen AT, Ullrich K: Neurotransmitter positron emission tomographic-studies in adults with phenylketonuria, a pilot study. Eur J Pediatr 1996, 155(Suppl 1):78-81.
  • [16]Hoeksma M, Reijngoud DJ, Pruim J, de Valk HW, Paans AM, van Spronsen FJ: Phenylketonuria: High plasma phenylalanine decreases cerebral protein synthesis. Mol Genet Metab 2009, 96:177-182.
  • [17]Hargreaves KM, Pardridge WM: Neutral amino acid transport at the human blood–brain barrier. J Biol Chem 1988, 263:19392-19397.
  • [18]Pardridge WM: Blood–brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 1998, 23:635-644.
  • [19]Smith QR: Transport of glutamate and other amino acids at the blood–brain barrier. J Nutr 2000, 130(Suppl):1016-1022.
  • [20]Oldendorf WH: Saturation of blood brain barrier transport of amino acids in phenylketonuria. Arch Neurol 1973, 28:45-48.
  • [21]O’Mara M, Oakley A, Bröer S: Mechanism and putative structure of B0-like neutral amino acid transporters. J Membrane Biol 2006, 213:111-118.
  • [22]Oldendorf WH, Sisson BW, Silverstein A: Brain uptake of selenomethionine Se 75. II. Reduced brain uptake of selenomethionine Se 75 in phenylketonuria. Arch Neurol 1971, 24:524-528.
  • [23]Landvogt C, Mengel E, Bartenstein P, Buchholz HG, Schreckenberger M, Siessmeier T, Scheurich A, Feldmann R, Weglage J, Cumming P, Zepp F, Ullrich K: Reduced cerebral fluoro-L dopamine uptake in adult patients suffering from phenylketonuria. J Cereb Blood Flow Metab 2008, 28:824-831.
  • [24]van Spronsen FJ: Phenylketonuria: a 21st century perspective. Nat Rev Endocrinol 2010, 6:509-514.
  • [25]van Spronsen FJ, van Rijn M, Dorgelo B, Hoeksma M, Bosch AM, Mulder MF, de Klerk JBC, de Koning T, Estela Rubio-Gozalbo M, de Vries M, Verkerk PH: Phenylalanine tolerance can already reliably be assessed at the age of 2 years in patients with PKU. J Inherit Metab Dis 2009, 32:27-31.
  • [26]Ishiwata K, Vaalburg W, Elsinga PH, Paans AM, Woldring MG: Metabolic studies with L-[1-14C]-tyrosine for the investigation of a kinetic model to measure protein synthesis rates with PET. J Nucl Med 1988, 29:524-529.
  • [27]Willemsen AT, van Waarde A, Paans AM, Pruim J, Luurtsema G, Go KG, Vaalburg W: In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1-11C]-tyrosine and PET. J Nucl Med 1995, 36:411-419.
  • [28]Cumming P, Ase A, Kuwabara H, Gjedde A: [3H]DOPA formed from [3H]tyrosine in living rat brain is not committed to dopamine synthesis. J Cereb Blood Flow Metab 1998, 18:491-499.
  • [29]Hawkins RA, Huang SC, Barrio JR, Keen RE, Feng D, Mazziotta JC, Phelps ME: Estimation of local cerebral protein synthesis rates with L-[1-11C]leucine and PET: methods, model, and results in animals and humans. J Cereb Blood Flow Metab 1989, 9:446-460.
  • [30]van Spronsen FJ, van Rijn M, van Dijk T, Smit GP, Reijngoud DJ, Berger R, Heymans HS: Plasma phenylalanine and tyrosine responses to different nutritional conditions (fasting/postprandial) in patients with phenylketonuria: effect of sample timing. Pediatrics 1993, 92:570-573.
  • [31]Omidi Y, Barar J, Ahmadian S, Heidari HR, Gumbleton M: Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cells. Cell Biochem Funct 2008, 26:381-391.
  • [32]del Pino MM S, Peterson DR, Hawkins RA: Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood–brain barrier. J Biol Chem 1995, 270:14913-14918.
  • [33]O’Kane RL, Hawkins RA: Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood–brain barrier. Am J Physiol Endocrinol Metab 2003, 285:E1167-E1173.
  • [34]Johnston MV: Brain plasticity in paediatric neurology. Eur J Paediatr Neurol 2003, 7:105-113.
  • [35]Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Caprihan A, Stephen JM: Development and decline of memory functions in normal, pathological and healthy successful aging. Brain Topogr 2011, 24:323-339.
  • [36]Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HB, Rakic P, Kostovic I: Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci U S A 2011, 108:13281-13286.
  • [37]Saneyoshi T, Fortin DA, Soderling TR: Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 2010, 20:108-115.
  文献评价指标  
  下载次数:29次 浏览次数:7次