期刊论文详细信息
Stem Cell Research & Therapy
Biological activity and magnetic resonance imaging of superparamagnetic iron oxide nanoparticles-labeled adipose-derived stem cells
Minming Zhang1  Risheng Yu1  Xinying Wu1  Liyong Jie1  Yanbin Tan1  Jingjing Fan1 
[1] Department of Radiology, 2nd Affiliated Hospital, Medical College, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
关键词: Magnetic resonance imaging;    Superparamagnetic iron oxide nanoparticles;    Bone marrow mesenchymal stem cells;    Adipose-derived stem cells;   
Others  :  847570
DOI  :  10.1186/scrt191
 received in 2012-11-17, accepted in 2013-04-12,  发布年份 2013
PDF
【 摘 要 】

Introduction

No comparative study of adipose-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (BMSCs) by using superparamagnetic iron oxide nanoparticles (SPIOs)-labeling and magnetic resonance imaging (MRI) has been performed.

Methods

We studied the biological activity and MRI of ADSCs by labeling them with SPIOs and comparing them with BMSCs. After incubating the cells in culture medium with different levels of SPIOs (control group: 0 μg/ml; Groups 1 to 3: 25, 50, and 100 μg/ml) for 24 hours, we compared ADSCs with BMSCs in terms of intracellular iron content, labeling efficiency, and cell viability. Stem cells in the culture medium containing 50 μg/ml SPIOs were induced into osteoblasts and fat cells. Adipogenic and osteogenic differentiation potentials were compared. R2* values of MRI in vitro were compared.

Results

The results showed that labeling efficiency was highest in Group 2. Intracellular iron content and R2* values increased with increasing concentrations of SPIOs, whereas cell viability decreased with increasing concentrations of SPIOs, and adipogenic and osteogenic differentiation potentials decreased. However, we found no significant difference between the two kinds of cells for any of these indexes.

Conclusions

ADSCs can be labeled and traced as easily as BMSCs in vitro. Given their abundance and higher proliferative capacity, as was previously shown, ADSCs may be better suited to stem cell therapy than are BMSCs.

【 授权许可】

   
2013 Fan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140718050824976.pdf 2142KB PDF download
Figure 8. 88KB Image download
Figure 7. 99KB Image download
Figure 6. 80KB Image download
Figure 5. 78KB Image download
Figure 4. 73KB Image download
Figure 3. 223KB Image download
Figure 2. 95KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Staack A, Rodriguez LV: Stem cells for the treatment of urinary incontinence. Curr Urol Rep 2011, 12:41-46.
  • [2]Gupta PK, Das AK, Chullikana A, Majumdar AS: Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 2012, 3:25. BioMed Central Full Text
  • [3]Donnelly EM, Lamanna J, Boulis NM: Stem cell therapy for the spinal cord. Stem Cell Res Ther 2012, 3:24. BioMed Central Full Text
  • [4]Taléns-Visconti R, Bonora A, Jover R, Mirabet V, Carbonell F, Castell JV, Gómez-Lechón MJ: Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol 2006, 12:5834-5845.
  • [5]Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002, 13:4279-4295.
  • [6]Kern S, Eichler H, Stoeve J, Kluter H, Bieback K: Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24:1294-1301.
  • [7]Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT: Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004, 22:560-567.
  • [8]Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM: Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006, 24:376-385.
  • [9]Frölich K, Scherzed A, Mlynski R, Technau A, Hagen R, Kleinsasser N, Radeloff A: Multipotent stromal cells for autologous cell therapy approaches in the guinea pig model. ORL J Otorhinolaryngol Relat Spec 2011, 73:9-16.
  • [10]van Buul GM, Kotek G, Wielopolski PA, Farrell E, Bos PK, Weinans H, Grohnert AU, Jahr H, Verhaar JA, Krestin GP, van Osch GJ, Bernsen MR: Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides. PLoS One 2011, 6:e17001.
  • [11]Balakumaran A, Pawelczyk E, Ren J, Sworder B, Chaudhry A, Sabatino M, Stroncek D, Frank JA, Robey PG: Superparamagnetic iron oxide nanoparticle labeling of bone marrow stromal (mesenchymal) cells does not affect their “stemness. PLoS One 2010, 5:e11462.
  • [12]Kedziorek DA, Kraitchman DL: Superparamagnetic iron oxide labeling of stem cells for MRI tracking and delivery in cardiovascular disease. Methods Mol Med 2010, 660:171-183.
  • [13]Wei H, Ooi TH, Tan G, Lim SY, Qian L, Wong P, Shim W: Cell delivery and tracking in post-myocardial infarction cardiac stem cell therapy: an introduction for clinical researchers. Heart Fail Rev 2010, 15:1-14.
  • [14]Odintsov B, Chun JL, Mulligan JA, Berry SE: 14.1 T whole body MRI for detection of mesoangioblast stem cells in a murine model of Duchenne muscular dystrophy. Magn Reson Med 2011, 66:1704-1714.
  • [15]Wimpenny I, Markides H, El Haj AJ: Orthopaedic applications of nanoparticle-based stem cell therapies. Stem Cell Res Ther 2012, 3:13. BioMed Central Full Text
  • [16]Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT, Mikulis DJ, Palmieri D, Bronder JL, Steeg PS, Yoneda T, MacDonald IC, Chambers AF, Rutt BK, Foster PJ: In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 2006, 56:1001-1010.
  • [17]Shi XL, Gu JY, Han B, Xu HY, Fang LA, Ding YT: Magnetically labeled mesenchymal stem cells after autologous transplantation into acutely injured liver. World J Gastroenterol 2010, 16:3674-3679.
  • [18]Dash R, Chung J, Chan T, Yamada M, Barral J, Nishimura D, Yang PC, Simpson PC: A molecular MRI probe to detect treatment of cardiac apoptosis in vivo. Magn Reson Med 2011, 66:1152-1162.
  • [19]Guo J, Shen JK, Wang L, Xiao L, Zhang RJ, Luo WF, Gong ZG, Sun J, Xu H, Sirois P, Li K: In vivo evaluation of cerebral transplantation of resovist-labeled bone marrow stromal cells in Parkinson’s disease rats using magnetic resonance imaging. Appl Biochem Biotechnol 2011, 163:636-648.
  • [20]Reddy AM, Kwak BK, Shim HJ, Ahn C, Lee HS, Suh YJ, Park ES: In vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated superparamagnetic iron oxide nanoparticle using 3.0T MRI. J Korean Med Sci 2010, 25:211-219.
  • [21]Yao Y, Li Y, Ma G, Liu N, Ju S, Jin J, Chen Z, Shen C, Teng G: In vivo magnetic resonance imaging of injected endothelial progenitor cells after myocardial infarction in rats. Mol Imaging Biol 2011, 13:303-313.
  • [22]Kim HS, Oh SY, Joo HJ, Son KR, Song IC, Moon WK: The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed 2010, 23:514-522.
  • [23]Wang L, Deng J, Wang J, Xiang B, Yang T, Gruwel M, Kashour T, Tomanek B, Summer R, Freed D, Jassal DS, Dai G, Glogowski M, Deslauriers R, Arora RC, Tian G: Superparamagnetic iron oxide does not affect the viability and function of adipose-derived stem cells, and superparamagnetic iron oxide-enhanced magnetic resonance imaging identifies viable cells. Magn Reson Imaging 2009, 27:108-119.
  • [24]Rice HE, Hsu EW, Sheng H, Evenson DA, Freemerman AJ, Safford KM, Provenzale JM, Warner DS, Johnson GA: Superparamagnetic iron oxide labeling and transplantation of adipose-derived stem cells in middle cerebral artery occlusion-injured mice. Am J Roentgenol 2007, 188:1101-1108.
  • [25]Răcuciu M, Creangă DE, Airinei A: Citric-acid-coated magnetite nanoparticles for biological applications. Eur Phys J E Soft Matter 2006, 21:117-121.
  • [26]Spencer ND, Gimble JM, Lopez MJ: Mesenchymal stromal cells: past, present, and future. Vet Surg 2011, 40:129-139.
  • [27]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284:143-147.
  • [28]Bäckesjö CM, Li Y, Lindgren U, Haldosén LA: Activation of Sirtl decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res 2006, 21:993-1002.
  • [29]Ye YX, Bogaert J: Cell therapy in myocardial infarction: emphasis on the role of MRI. Eur Radiol 2008, 18:548-569.
  • [30]Suh JS, Lee JY, Choi YS, Yu F, Yang V, Lee SJ, Chung CP, Park YJ: Efficient labeling of mesenchymal stem cells using cell permeable magnetic nanoparticles. Biochem Biophys Res Commun 2009, 379:669-675.
  • [31]Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA: Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003, 229:838-846.
  • [32]Wang HH, Wang YX, Leung KC, Au DW, Xuan S, Chak CP, Lee SK, Sheng H, Zhang G, Qin L, Griffith JF, Ahuja AT: Durable mesenchymal stem cell labelling by using polyhedral superparamagnetic iron oxide nanoparticles. Chemistry 2009, 15:12417-12425.
  • [33]Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JWM: Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 2004, 17:513-517.
  • [34]Chen YC, Hsiao JK, Liu HM, Lai IY, Yao M, Hsu SC, Ko BS, Chen YC, Yang CS, Huang DM: The inhibitory effect of superparamagnetic iron oxide nanoparticles (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 2010, 245:272-279.
  • [35]Pawelezyk E, Arbab AS, Pandit S, Hu E, Frank JA: Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed 2006, 19:581-592.
  • [36]Karlsson HL, Gustafsson J, Cronholm P, Moller L: Size-dependent toxicity of metal oxide particles: a comparison between nano- and micrometer size. Toxicol Lett 2009, 188:112-118.
  • [37]Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, Porter D, Shi X, Vallyathan V, Castranova V, Flynn DC: Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 2009, 6:1-14. BioMed Central Full Text
  文献评价指标  
  下载次数:21次 浏览次数:7次