期刊论文详细信息
Retrovirology
A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region
Hui Zhang1  Weiping Cai2  Xuemin Guo1  Jie Zhou1  Haihua Luo1  Zhuoqiong Huang1  Bingfeng Liu1  Guannan Geng1  Miaomiao Fan1  Yijun Zhang1 
[1] Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China;Department of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
关键词: Latency;    Viral replication;    Transcription activation;    TATA box;    Viral miRNA;    HIV-1 viruses;   
Others  :  802441
DOI  :  10.1186/1742-4690-11-23
 received in 2013-11-01, accepted in 2014-02-18,  发布年份 2014
PDF
【 摘 要 】

Background

A lot of microRNAs (miRNAs) derived from viral genomes have been identified. Many of them play various important roles in virus replication and virus-host interaction. Cellular miRNAs have been shown to participate in the regulation of HIV-1 viral replication, while the role of viral-encoded miRNAs in this process is largely unknown.

Results

In this report, through a strategy combining computational prediction and deep sequencing, we identified a novel HIV-1-encoded miRNA, miR-H3. MiR-H3 locates in the mRNA region encoding the active center of reverse transcriptase (RT) and exhibits high sequence conservation among different subtypes of HIV-1 viruses. Overexpression of miR-H3 increases viral production and the mutations in miR-H3 sequence significantly impair the viral replication of wildtype HIV-1 viruses, suggesting that it is a replication-enhancing miRNA. MiR-H3 upregulates HIV-1 RNA transcription and protein expression. A serial deletion assay suggests that miR-H3 targets HIV-1 5′ LTR and upregulates the promoter activity. It interacts with the TATA box in HIV-1 5′ LTR and sequence-specifically activates the viral transcription. In addition, chemically-synthesized small RNAs targeting HIV-1 TATA box activate HIV-1 production from resting CD4+ T cells isolated from HIV-1-infected patients on suppressive highly active antiretroviral therapy (HAART).

Conclusions

We have identified a novel HIV-1-encoded miRNA which specifically enhances viral production and provide a specific method to activate HIV-1 latency.

【 授权许可】

   
2014 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708023635701.pdf 1823KB PDF download
Figure 7. 37KB Image download
Figure 6. 57KB Image download
Figure 5. 74KB Image download
Figure 4. 74KB Image download
Figure 3. 69KB Image download
Figure 2. 61KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Bushati N, Cohen SM: microRNA functions. Annu Rev Cell Dev Biol 2007, 23:175-205.
  • [2]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
  • [3]Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T: Identification of virus-encoded microRNAs. Science 2004, 304:734-736.
  • [4]Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T: Identification of microRNAs of the herpesvirus family. Nat Methods 2005, 2:269-276.
  • [5]Umbach JL, Cullen BR: The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 2009, 23:1151-1164.
  • [6]Klase ZA, Sampey GC, Kashanchi F: Retrovirus infected cells contain viral microRNAs. Retrovirology 2013, 10:15. BioMed Central Full Text
  • [7]Schopman NC, Willemsen M, Liu YP, Bradley T, van Kampen A, Baas F, Berkhout B, Haasnoot J: Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res 2011, 40:414-427.
  • [8]Kincaid RP, Burke JM, Sullivan CS: RNA virus microRNA that mimics a B-cell oncomiR. Proc Natl Acad Sci U S A 2012, 109:3077-3082.
  • [9]Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S: West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res 2012, 40:2210-2223.
  • [10]Hutvagner G, Zamore PD: A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002, 297:2056-2060.
  • [11]Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T: Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002, 110:563-574.
  • [12]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
  • [13]Lytle JR, Yario TA, Steitz JA: Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 2007, 104:9667-9672.
  • [14]Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I: MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008, 455:1124-1128.
  • [15]Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R: MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 2008, 105:1608-1613.
  • [16]Younger ST, Corey DR: Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res 2011, 39:5682-5691.
  • [17]Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J, Li LC: Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res 2012, 40:1695-1707.
  • [18]Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005, 309:1577-1581.
  • [19]Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O: A cellular microRNA mediates antiviral defense in human cells. Science 2005, 308:557-560.
  • [20]Huang J1, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H: Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 2007, 13:1241.
  • [21]Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D: SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005, 435:682-686.
  • [22]Choy EY, Siu KL, Kok KH, Lung RW, Tsang CM, To KF, Kwong DL, Tsao SW, Jin DY: An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med 2008, 205:2551-2560.
  • [23]Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, Horwitz E, Prokocimer Z, Prichard M, Hahn G, Goldman-Wohl D, Greenfield C, Yagel S, Hengel H, Altuvia Y, Margalit H, Mandelboim O: Host immune system gene targeting by a viral miRNA. Science 2007, 317:376-381.
  • [24]Bennasser Y, Le SY, Yeung ML, Jeang KT: HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 2004, 1:43. BioMed Central Full Text
  • [25]Klase Z, Kale P, Winograd R, Gupta MV, Heydarian M, Berro R, McCaffrey T, Kashanchi F: HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007, 8:63. BioMed Central Full Text
  • [26]Ouellet DL, Plante I, Landry P, Barat C, Janelle ME, Flamand L, Tremblay MJ, Provost P: Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res 2008, 36:2353-2365.
  • [27]Klase Z, Winograd R, Davis J, Carpio L, Hildreth R, Heydarian M, Fu S, McCaffrey T, Meiri E, Ayash-Rashkovsky M, Gilad S, Bentwich Z, Kashanchi F: HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology 2009, 6:18. BioMed Central Full Text
  • [28]Omoto S, Ito M, Tsutsumi Y, Ichikawa Y, Okuyama H, Brisibe EA, Saksena NK, Fujii YR: HIV-1 nef suppression by virally encoded microRNA. Retrovirology 2004, 1:44. BioMed Central Full Text
  • [29]Yeung ML, Bennasser Y, Watashi K, Le SY, Houzet L, Jeang KT: Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 2009, 37:6575-6586.
  • [30]Ouellet DL, Vigneault-Edwards J, Letourneau K, Gobeil LA, Plante I, Burnett JC, Rossi JJ, Provost P: Regulation of host gene expression by HIV-1 TAR microRNAs. Retrovirology 2013, 10:86. BioMed Central Full Text
  • [31]Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, Burch CL, Weeks KM: Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 2009, 460:711-716.
  • [32]Lin J, Cullen BR: Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J Virol 2007, 81:12218-12226.
  • [33]Zhang H, Zhou Y, Alcock C, Kiefer T, Monie D, Siliciano J, Li Q, Pham P, Cofrancesco J, Persaud D, Siliciano RF: Novel single-cell-level phenotypic assay for residual drug susceptibility and reduced replication capacity of drug-resistant human immunodeficiency virus type 1. J Virol 2004, 78:1718-1729.
  • [34]Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC: Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002, 46:1896-1905.
  • [35]Purcell DF, Martin MA: Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 1993, 67:6365-6378.
  • [36]van Opijnen T, Kamoschinski J, Jeeninga RE, Berkhout B: The human immunodeficiency virus type 1 promoter contains a CATA box instead of a TATA box for optimal transcription and replication. J Virol 2004, 78:6883-6890.
  • [37]Morris KV, Chan SW, Jacobsen SE, Looney DJ: Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004, 305:1289-1292.
  • [38]Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R: Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 2006, 103:17337-17342.
  • [39]Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR: Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 2007, 3:166-173.
  • [40]Jones KA, Kadonaga JT, Luciw PA, Tjian R: Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 1986, 232:755-759.
  • [41]Harrich D, Garcia J, Wu F, Mitsuyasu R, Gonazalez J, Gaynor R: Role of SP1-binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat. J Virol 1989, 63:2585-2591.
  • [42]Rohr O, Sawaya BE, Lecestre D, Aunis D, Schaeffer E: Dopamine stimulates expression of the human immunodeficiency virus type 1 via NF-kappaB in cells of the immune system. Nucleic Acids Res 1999, 27:3291-3299.
  • [43]Jacque JM, Fernandez B, Arenzana-Seisdedos F, Thomas D, Baleux F, Virelizier JL, Bachelerie F: Permanent occupancy of the human immunodeficiency virus type 1 enhancer by NF-kappa B is needed for persistent viral replication in monocytes. J Virol 1996, 70:2930-2938.
  • [44]Cron RQ, Bartz SR, Clausell A, Bort SJ, Klebanoff SJ, Lewis DB: NFAT1 enhances HIV-1 gene expression in primary human CD4 T cells. Clin Immunol 2000, 94:179-191.
  • [45]Robichaud GA, Barbeau B, Fortin JF, Rothstein DM, Tremblay MJ: Nuclear factor of activated T cells is a driving force for preferential productive HIV-1 infection of CD45RO-expressing CD4+ T cells. J Biol Chem 2002, 277:23733-23741.
  • [46]Sheridan PL, Sheline CT, Cannon K, Voz ML, Pazin MJ, Kadonaga JT, Jones KA: Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes Dev 1995, 9:2090-2104.
  • [47]Henderson AJ, Connor RI, Calame KL: C/EBP activators are required for HIV-1 replication and proviral induction in monocytic cell lines. Immunity 1996, 5:91-101.
  • [48]Henderson AJ, Calame KL: CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proc Natl Acad Sci U S A 1997, 94:8714-8719.
  • [49]Rabbi MF, Saifuddin M, Gu DS, Kagnoff MF, Roebuck KA: U5 region of the human immunodeficiency virus type 1 long terminal repeat contains TRE-like cAMP-responsive elements that bind both AP-1 and CREB/ATF proteins. Virology 1997, 233:235-245.
  • [50]Kato H, Horikoshi M, Roeder RG: Repression of HIV-1 transcription by a cellular protein. Science 1991, 251:1476-1479.
  • [51]Yoon JB, Li G, Roeder RG: Characterization of a family of related cellular transcription factors which can modulate human immunodeficiency virus type 1 transcription in vitro. Mol Cell Biol 1994, 14:1776-1785.
  • [52]Margolis DM, Somasundaran M, Green MR: Human transcription factor YY1 represses human immunodeficiency virus type 1 transcription and virion production. J Virol 1994, 68:905-910.
  • [53]Subler MA, Martin DW, Deb S: Inhibition of viral and cellular promoters by human wild-type p53. J Virol 1992, 66:4757-4762.
  • [54]Duan L, Ozaki I, Oakes JW, Taylor JP, Khalili K, Pomerantz RJ: The tumor suppressor protein p53 strongly alters human immunodeficiency virus type 1 replication. J Virol 1994, 68:4302-4313.
  • [55]Rohr O, Marban C, Aunis D, Schaeffer E: Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 2003, 74:736-749.
  • [56]Berkhout B, Silverman RH, Jeang KT: Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 1989, 59:273-282.
  • [57]Brigati C, Giacca M, Noonan DM, Albini A: HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett 2003, 220:57-65.
  • [58]Marzio G, Tyagi M, Gutierrez MI, Giacca M: HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci U S A 1998, 95:13519-13524.
  • [59]Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, Peng J, Blau C, Hazuda D, Price D, Flores O: P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997, 11:2633-2644.
  • [60]Zhu Y, Pe’ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, Amendt B, Mathews MB, Price DH: Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 1997, 11:2622-2632.
  • [61]Jowett JB, Planelles V, Poon B, Shah NP, Chen ML, Chen IS: The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol 1995, 69:6304-6313.
  • [62]Hrimech M, Yao XJ, Bachand F, Rougeau N, Cohen EA: Human immunodeficiency virus type 1 (HIV-1) Vpr functions as an immediate-early protein during HIV-1 infection. J Virol 1999, 73:4101-4109.
  • [63]Varin A, Manna SK, Quivy V, Decrion AZ, Van Lint C, Herbein G, Aggarwal BB: Exogenous Nef protein activates NF-kappa B, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells. Role in AIDS pathogenesis. J Biol Chem 2003, 278:2219-2227.
  • [64]Manninen A, Renkema GH, Saksela K: Synergistic activation of NFAT by HIV-1 nef and the Ras/MAPK pathway. J Biol Chem 2000, 275:16513-16517.
  • [65]Chun TW, Engel D, Mizell SB, Hallahan CW, Fischette M, Park S, Davey RT Jr, Dybul M, Kovacs JA, Metcalf JA, Mican JM, Berrey MM, Corey L, Lane HC, Fauci AS: Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med 1999, 5:651-655.
  • [66]Prins JM, Jurriaans S, van Praag RM, Blaak H, van Rij R, Schellekens PT, ten Berge IJ, Yong SL, Fox CH, Roos MT, de Wolf F, Goudsmit J, Schuitemaker H, Lange JM: Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS 1999, 13:2405-2410.
  • [67]Kulkosky J, Culnan DM, Roman J, Dornadula G, Schnell M, Boyd MR, Pomerantz RJ: Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 2001, 98:3006-3015.
  • [68]Ylisastigui L, Archin NM, Lehrman G, Bosch RJ, Margolis DM: Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS 2004, 18:1101-1108.
  • [69]Archin NM, Espeseth A, Parker D, Cheema M, Hazuda D, Margolis DM: Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res Hum Retroviruses 2009, 25:207-212.
  • [70]Contreras X, Schweneker M, Chen CS, McCune JM, Deeks SG, Martin J, Peterlin BM: Suberoylanilide hydroxamic acid reactivates HIV from latently infected cells. J Biol Chem 2009, 284:6782-6789.
  • [71]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31:3406-3415.
  • [72]Vermeire J, Naessens E, Vanderstraeten H, Landi A, Iannucci V, Van Nuffel A, Taghon T, Pizzato M, Verhasselt B: Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lenti- and retroviral vectors. PLoS One 2012, 7:e50859.
  • [73]Dornadula G, Zhang H, VanUitert B, Stern J, Livornese L Jr, Ingerman MJ, Witek J, Kedanis RJ, Natkin J, DeSimone J, Pomerantz RJ: Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA 1999, 282:1627-1632.
  • [74]Yang S, Sun Y, Zhang H: The multimerization of human immunodeficiency virus type I Vif protein: a requirement for Vif function in the viral life cycle. J Biol Chem 2001, 276:4889-4893.
  • [75]Gilman M: Ribonuclease protection assay. Curr Protoc Mol Biol 2001. Chapter 4:Unit4 7. http://www.ncbi.nlm.nih.gov/pubmed/18265241 webcite
  文献评价指标  
  下载次数:83次 浏览次数:10次