| Vascular Cell | |
| Myeloid cells in tumor inflammation | |
| Judith A Varner1  Michael C Schmid1  | |
| [1] Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA, 92093-0912, USA | |
| 关键词: Cancer; Tumor inflammation; Tumor microenvironment; Tumor angiogenesis; Myeloid derived suppressor cells; Macrophage; | |
| Others : 802059 DOI : 10.1186/2045-824X-4-14 |
|
| received in 2012-06-21, accepted in 2012-06-25, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Bone marrow derived myeloid cells progressively accumulate in tumors, where they establish an inflammatory microenvironment that is favorable for tumor growth and spread. These cells are comprised primarily of monocytic and granulocytic myeloid derived suppressor cells (MDSCs) or tumor-associated macrophages (TAMs), which are generally associated with a poor clinical outcome. MDSCs and TAMs promote tumor progression by stimulating immunosuppression, neovascularization, metastasis and resistance to anti-cancer therapy. Strategies to target the tumor-promoting functions of myeloid cells could provide substantial therapeutic benefit to cancer patients.
【 授权许可】
2012 Schmid and Varner; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708014928569.pdf | 1370KB | ||
| Figure 2 . | 88KB | Image | |
| Figure 1 . | 67KB | Image |
【 图 表 】
Figure 1 .
Figure 2 .
【 参考文献 】
- [1]Biswas SK, Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010, 11(10):889-896.
- [2]Grivennikov SI, Greten FR, Karin M: Immunity, inflammation, and cancer. Cell 2010, 140(6):883-899.
- [3]Murray PJ, Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011, 11(11):723-737.
- [4]Wynn TA, Barron L: Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010, 30(3):245-257.
- [5]Mantovani A, et al.: Cancer-related inflammation. Nature 2008, 454(7203):436-444.
- [6]Mantovani A, Sica A: Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010, 22(2):231-237.
- [7]Hanahan D, Coussens LM: Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012, 21(3):309-322.
- [8]Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012, 12(4):253-268.
- [9]Geissmann F, et al.: Development of monocytes, macrophages, and dendritic cells. Science 2010, 327(5966):656-661.
- [10]Karp CL, Murray PJ: Non-canonical alternatives: what a macrophage is 4. J Exp Med 2012, 209(3):427-431.
- [11]Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity 2010, 32(5):593-604.
- [12]Greten FR, et al.: IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004, 118(3):285-296.
- [13]Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005, 5(10):749-759.
- [14]Lin EY, et al.: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 2006, 66(23):11238-11246.
- [15]Qian B, et al.: A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 2009, 4(8):e6562.
- [16]Ruffell B, Affara NI, Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012, 33(3):119-126.
- [17]Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141(1):39-51.
- [18]Rolny C, et al.: HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011, 19(1):31-44.
- [19]Peranzoni E, et al.: Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 2010, 22(2):238-244.
- [20]Bronte V, et al.: Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 2000, 96(12):3838-3846.
- [21]Mandruzzato S, et al.: IL4Ralpha + myeloid-derived suppressor cell expansion in cancer patients. J Immunol 2009, 182(10):6562-6568.
- [22]Corzo CA, et al.: HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 2010, 207(11):2439-2453.
- [23]Corzo CA, et al.: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 2009, 182(9):5693-5701.
- [24]Diaz-Montero CM, et al.: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009, 58(1):49-59.
- [25]Movahedi K, et al.: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 2008, 111(8):4233-4244.
- [26]Yang R, et al.: CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1 + CD11b + myeloid cells. Cancer Res 2006, 66(13):6807-6815.
- [27]Gallina G, et al.: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 2006, 116(10):2777-2790.
- [28]Sawanobori Y, et al.: Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 2008, 111(12):5457-5466.
- [29]Youn JI, et al.: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 2008, 181(8):5791-5802.
- [30]Haile LA, et al.: CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol 2010, 185(1):203-210.
- [31]Van Ginderachter JA, et al.: Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood 2006, 108(2):525-535.
- [32]Almand B, et al.: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001, 166(1):678-689.
- [33]Ochoa AC, et al.: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 2007, 13(2 Pt 2):721s-726s.
- [34]Filipazzi P, et al.: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 2007, 25(18):2546-2553.
- [35]Hoechst B, et al.: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008, 135(1):234-243.
- [36]Vuk-Pavlovic S, et al.: Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate 2010, 70(4):443-455.
- [37]Solito S, et al.: A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 2011, 118(8):2254-2265.
- [38]Luster AD, Alon R, von Andrian UH: Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005, 6(12):1182-1190.
- [39]Weber C, Koenen RR: Fine-tuning leukocyte responses: towards a chemokine’interactome’. Trends Immunol 2006, 27(6):268-273.
- [40]Du R, et al.: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008, 13(3):206-220.
- [41]Nakasone ES, et al.: Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 2012, 21(4):488-503.
- [42]Schmid MC, et al.: Combined blockade of integrin-alpha4beta1 plus cytokines SDF-1alpha or IL-1beta potently inhibits tumor inflammation and growth. Cancer Res 2011, 71(22):6965-6975.
- [43]Yang L, et al.: Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell 2008, 13(1):23-35.
- [44]Wang XQ, et al.: The high level of RANTES in the ectopic milieu recruits macrophages and induces their tolerance in progression of endometriosis. J Mol Endocrinol 2010, 45(5):291-299.
- [45]Shojaei F, et al.: G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 2009, 106(16):6742-6747.
- [46]Shojaei F, et al.: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 2007, 450(7171):825-831.
- [47]Denardo DG, et al.: Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discov 2011, 1:54-67.
- [48]Shimizu Y, Rose DM, Ginsberg MH: Integrins in the immune system. Adv Immunol 1999, 72:325-380.
- [49]Shattil SJ, Kim C, Ginsberg MH: The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010, 11(4):288-300.
- [50]Ley K, et al.: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007, 7(9):678-689.
- [51]Schmid MC, et al.: Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 2011, 19(6):715-727.
- [52]Avraamides CJ, Garmy-Susini B, Varner JA: Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 2008, 8(8):604-617.
- [53]Desgrosellier JS, Cheresh DA: Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010, 10(1):9-22.
- [54]Foubert P, Varner JA: Integrins in tumor angiogenesis and lymphangiogenesis. Methods Mol Biol 2012, 757:471-486.
- [55]Jin H, et al.: Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res 2006, 66(4):2146-2152.
- [56]Luque A, et al.: Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common beta 1 chain. J Biol Chem 1996, 271(19):11067-11075.
- [57]Arnaout MA, Mahalingam B, Xiong JP: Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 2005, 21:381-410.
- [58]Ye F, et al.: Recreation of the terminal events in physiological integrin activation. J Cell Biol 2010, 188(1):157-173.
- [59]Ye F, Kim C, Ginsberg MH: Reconstruction of integrin activation. Blood 2012, 119(1):26-33.
- [60]Feral CC, et al.: Blocking the alpha 4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest 2006, 116(3):715-723.
- [61]Manevich E, et al.: Talin 1 and paxillin facilitate distinct steps in rapid VLA-4-mediated adhesion strengthening to vascular cell adhesion molecule 1. J Biol Chem 2007, 282(35):25338-25348.
- [62]Lewis JS, et al.: Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 2000, 192(2):150-158.
- [63]Sunderkotter C, et al.: Macrophages and angiogenesis. J Leukoc Biol 1994, 55(3):410-422.
- [64]Giraudo E, Inoue M, Hanahan D: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 2004, 114(5):623-633.
- [65]Hildenbrand R, et al.: Urokinase and macrophages in tumour angiogenesis. Br J Cancer 1995, 72(4):818-823.
- [66]Esposito I, et al.: Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 2004, 57(6):630-636.
- [67]Huang S, et al.: Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst 2002, 94(15):1134-1142.
- [68]Ostrand-Rosenberg S, Sinha P: Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009, 182(8):4499-4506.
- [69]Munder M: Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 2009, 158(3):638-651.
- [70]Rodriguez PC, et al.: L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol 2003, 171(3):1232-1239.
- [71]Nagaraj S, et al.: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2007, 13(7):828-835.
- [72]Sauer H, Wartenberg M, Hescheler J: Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 2001, 11(4):173-186.
- [73]Fichtner-Feigl S, et al.: Restoration of tumor immunosurveillance via targeting of interleukin-13 receptor-alpha 2. Cancer Res 2008, 68(9):3467-3475.
- [74]Terabe M, et al.: Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003, 198(11):1741-1752.
- [75]Shojaei F, et al.: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1+ myeloid cells. Nat Biotechnol 2007, 25(8):911-920.
- [76]Qu X, et al.: Induction of Bv8 expression by granulocyte-colony stimulating factor in CD11b + Gr1+ cells: Key role of Stat3 signaling. J Biol Chem 2012, 287(23):19574-19584.
- [77]Shojaei F, et al.: Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A 2008, 105(7):2640-2645.
- [78]Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005, 307(5706):58-62.
- [79]Mazzieri R, et al.: Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 2011, 19(4):512-526.
- [80]Stockmann C, et al.: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 2008, 456(7223):814-818.
- [81]Shree T, et al.: Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 2011, 25(23):2465-2479.
- [82]Squadrito ML, et al.: miR-511-3p Modulates Gentic Programs of Tumor-Associated Macrophages. Cell Reports 2012, 1:141-154.
- [83]DeNardo DG, et al.: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 2009, 16(2):91-102.
PDF